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Preface

The quantitative estimation of undiscovered mineral and energy resources
is a relatively young but increasingly important activity that has developed
over the past few decades. Quantitative resource estimation for uranium has
received particular attention in the past ten years. In the forefront has
been the develépment of assessment methods for uranium resources (Harris,
1977). To date, the most accepted methods are based on geologic analogy.
These methods by their nature tend to be subjective and therefore questioned
as to thzir reliability. Only recently have probabilitiés been attached to
the estimates. The estimates of undiscovered uranium resources ;eported by
the U.S. Department of Energy (DOE) at this writing (March 1980) are probably
the best available; however, past DOE estimates have received severe criticism
(Silver, 1978; Keeny, 1977).

The need for improved resource assessment methods in order to lessen
subjectivity and to increase reliability (repeatability) is widely
recognized. An improved method at the same time would increase the
credibility (believability) of uranium-resource estimates, and, presumably
would result in a more acceptable energy policy. It is this urgent need for
an improved method that drives our current research.

The_need for genetic models for uranium exploration and to assess
undiscovered uranium resources has been expressed repeatedly over the past
several'}ears (Adams, 1975; Davis, 1977; Bailly, 1978; Cathles, 1978). 1In
late 1976, the decision was made under the leadership of F. C. Armstrong to
initiate in the U.S. Geological Survey a research project to develop geologic
resource models based on genetic principles that could be used for estimating
undiscovered uranium resources. Also anticipated was that such models would

generate data sets of a degree of complexity that would require the described



of computer-based methods similar to characteristic analysis developed by
Botbol and others (1977). Finally, the fact was recognized that resource
assessment is enhanced by knowledge of grade-tonnage relations among known
deposits. A research plan to develop genetic—geologic models, to establish
grade-tonnage relationships, and to apply geologic decision (characteristic)

analysis was presented to the National Research Council’s Workshop on concepts

of uranium resources and producibility, September 20-21, 1977 (Finch, 1978;

McCammon, 1978). Although the initial timetable for achieving the proposed
research goals has proved premature, progress has been made, and the present
document summarizes the progress to date.

The prime objective of our current research on uranium resource
assessment methodology is to assist the Department of Energy’s (DOE) National
Uranium Resource Evaluation (NURE) program (U.S. Energy Research and
Development Administration, 1976). There are deadlines of October 1980, to
complete assessment of the most favorable parts of the country and of 1985 to
complete the assessment of the entire country (Everhart, 1978). Such
stringent demands have prompted DOE to provide financial and technical support
to the U.S. Geological Survey for research on resource-assessment
methodology. As of the annual estimate issued 1 January 1980, DOE’s current
methodology is based on engineering concepts derived from the estimation of
reserves and is highly depe;dent upon the knowledge and experience of a few
individuals. New and improved methodology in development for the DOE October
1980 assessment uses a subjective geologic analogy approach to estimate
uranium endowment from which potential forward—-cost resources are assigned on
a basis akin to that for reserves. The methodology proposed by the U.S.
Geological Survey provides for maximum utilization of the available geologic

data and, in addition, provides for objectivity in applying current
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geologic concepts. Thus, the estimates derived should be more reliable and
more credible than before. Because the methodology is untested, however, it
is being applied using a prototype model in the San Juan Basin, the Nation’s
dominant uranium production area.

This progress report is divided into a number of parts. Those parts that
are completed are listed below. Anticipated parts describe models of
additional types of uranium deposits and the results of the testing of the San
Juan Basin model. Critiques of each pért are solicited and should be mailed
to the authors: U.S. Geological Surve§; Mail Stop 916, P.O. Box 25046,

Federal Center, Denver, CO 80225.

Parts released in the initial series

Part I-—Genetic-geologic models—-A systematic approach to evaluate geologic
favorability for undiscovered uranium resources by W. I. Finch, H.
C. Granger, Robert Lupe, and R. B. McCammon.

Part I1I--Geologlic decision analysis and 1its application to genetic—geologic
models by R. B. McCammon.

Part III--Genetic-geologic model for tabular humate uranium deposits, San Juan
Basin, New Mexico by H. C. Granger, W. 1. Finch, R. E. Thaden, and

A. R. Kirk.

vii
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PART I.-—GENETIC-GEOLOGIC MODELS--A SYSTEMATIC APPROACH TO

EVALUATE GEOLOGIC FAVORABILITY FOR UNDISCOVERED URANIUM RESOURCES

By Warren I. Finch, Harry C. Granger, Robert Lupe,

and Richard B. McCammon

ABSTRACT

Current methods of assessing undiscovered uranium resources may be unduly
subjective, quite possibly inconsistent, and, as a consequence, of question-
able reliability. Our research is aimed at redu&ing sub jectivity and
increasing the reliability by designing a systematic method that depends
largely on geologic data and their statistical frequency of occurrence. This
progress report outlines a genetic approach to modeling the geologic factors
assoclated with uranium mineralization in order to evaluate the geologic
favorability for the occurrence of undiscovered uranium deposits of the type
modeled.

Uranium has been concentrated by various processes into many types of
deposits in different igneous, sedimentary, and metamorphic environments--all
of which makes a genetic scheme of geologic modeling attractive. Most
geologic models are descriptive of the three-dimensional setting of the
deposits and have only limited or implied genetic qualities. The genetic~—
geologic model pertains to all the factors that describe the habitat and
process of formation of a specific group of deposits thought to have a common -
origin. These models relate the processes of uranium concentration in a time
sequence of events——the fourth dimension-—-that produced the characteristics we

can now either observe or infer.



A matrix has been designed to facilitate model building and later
computerization and application of the model to determine favorability. The
rows of the matrix consist of the eight chronological process stages proposed
for the formation of a uranium deposit: (1) precursor processes, (2) host-
rock formation, (3) rock preparation, (4) uranium-source development, (5)
uranium transport, (6) primary uranium deposition, (7) modification of primary
minerals, and (8) preservation. These basic eight stages may be modified to
fit a particular type of deposit. The columns of the matrix consist of the
genetic processes, the geologic evidence or observations that led to/j
identifying each process, a set of questions to apply the model, and the
corresponding data requirements to answer the questions. The genetic-process
and geologic-evidence columns form the basic genetic-geologic model. The set
of questions in the third column is for testing the presence or absence of
each genetic-geologic parameter or attribute. For the geologic—-decision-
analysis computer application each question is asked so as to require a
positive, negative, or don’t know answer. The questions are related to a
particular model of uranium occurrence and their relationship can be described
by a chronological logic circult, which i1s used to evaluate favorability. The
eight process stages make up a circuit. For a particular control area,
statistically derived weights are obtained for each stage. The weights are
then combined to determine a composite weight for the control area. The logic
circuit can then be used to evaluate the favorability of unknown areas. The
types of products from geologic—decision analysis are a favorability map of
each stage and a composite map of all stages.

Extension of the models to resource assessment requires the integration
of the grade-tonnage characteristics of known deposits and the prior -

probability of uranium occurrence. To accomplish this, we have extended the

application of geologic—decision analysis beyond favorability determination.
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INTRODUCTION

Conventional methods of determining favorability fér undiscovered uranium
resources are based on analogical comparisons of the test area with a known or
control area of simlilar geology. The basic concept of geologic analogy is a
valid one; its application has met with increasing success as our
understanding of the environments of uranium ore deposits has increased.

Where the factors of similarity §r favorability are determined subjectively,
the favorability has been calculated as the sum of judgmental numerical
ratings of various geologic parameters (Hetland and Grundy, 1978). 1In large
part, the favorability determined this way has been regarded by many as
arbitrary and, hence, unreliable (that is, not consistently reproducible by
two or more assessors, or perhaps even by a single assessor at different
times).

In a less—-structured way, and with equally unsatisfying response, an area
can be judged subjectively, based on experience or "gut-feeling", to have a
percentage of favorability relative to that of a control area. A testimony to
the variability of purely subjective approaches is the 1,000-fold range in
estimates of the undiscovered uranium in New Mexico made by more than 40
recognized "experts" (Ellis and others, 1975).

A recent method for evaluating the mineral potential of a given prospect
has been developed by Qtanford Research Institute International (Duda and
others, 1978). This method, called Prospector, is a computer-based consultant
system that permits a field geologist to subjectively compare knowledge of a
given prospect with an exploration model built by a specialist for the given
type of deposit. Subjective weighting of each attribute of the model is built
into the system by the model builder. Although the Prospector system is
intended to evaluate a specific prospect relative to the model, it could be

3



adapted to evaluate an area for favorability, and subsequently used for
resource assessment, but this conversion has not been made. Present
Prospector uranium models are only for ores in sandstone.

The need for an improved method for determining favorability that lessens
subjectivity and thereby increases reliability has largely motivated our
research. Our immediate aim is to design a system of models that represents
more accurately the occurrence of uranium deposits of specific types, grades,
and tonnages. Such a system would incorporate uranium endowment, including
grade—-tonnage relations, and ;he prior probability of occurrence of one or
more deposits of the model type in an area.

In the early stages of our research, we considered the clagsification of
uranium deposits in the model design. This proved to be unsatisfactory, and
classification is dismissed here as an immediate goal. Ultimately, we hope
that the modeling will lead to a useable genetic classification. Such a
classification should have defined boundaries in which any new type of deposit
discovered would fit; in fact, new types should be predicted by such a
process—oriented classification.

In general, we use the term "model" to mean any systematic and complete
description of a single deposit or of a group of deposits that mostly have
common characteristics. A genetic model pertains to all those processes
having common origins. Such processes include not only ore-forming ones, but
also those that preceded mineralization and had some direct or indirect
bearing on the actual mineralization, and those that followed primary
mineralization. Listing of the processes in chronological order is the basis
of the genetic-model concept and provides the 1link with geologic-occurrence
models. Genetic models 1lnvolve four dimensions—-the common three dimensions

of space plus the all-important time dimension. A system of genetic and



geologic models constructed interactively is best described as a genetic-
geologic model.

An important aspect of our modeling that tends to decrease subjectivity
is that the models are based more on data rather than on subjective
evaluation. This is not to say that knowledge or experience is not required
in model building, but a model once built can be applied chiefly with data
obtained from observations and méasurements. More important, the use of data
allows correlation tests to determine the relative importance of the various
factors, and thus to achieve a statistical weighting of factors that increases
objectivity. There is an obvious disadvantage when inadequate data are
available in the test area to permit rigorous application, but paucity of data
will also limit use of purely subjective methods.

Each genetic-geologic model is designed to characterize a uranium-deposit
type within a specific geologic province, such as a particular sedimentary
basin, pluton, or metamorphic facies. Ideally, a model can be used to assess
the favorability of the deposit type within any other geologic province judged
to be similar. A model can be used, with some loss of effectiveness, however,
to assess parts of geologic provinces or even a single outcrop or drill
hole. For computer—-based application, most convenient is to construct
geographic cells of some fixed size and assess each cell and then to aggregate
groups of cells to delineate favorable portions within larger geographic
regions. —~

Genetic-geologic models are intended to be interactive within and among
themselves, as objective as available data will allow, systematic, thorough
and complete, logical and auditable, consistent but flexible, and ultimately

predictive of new undiscovered environments for uranium occurrence.



There are multiple uses of genetic—geologic models. The current models
are aimed specifically at assessing favorability for undiscovered uranium
resources. With little if any modification, the same models can be used to
gulde exploration. Moreover, models of a more theoretical basis could be
built that would characterize in greater detail the processes of ore formation
and related geochemical reactions. Whatever models are developed, the skills
and knowledge of exploration geologists as well as beginning uranium
geologists should be upgraded. Finaliy, genetic—-geologic models are
appliéible not 6nly to uranium deposits but also to mineral deposits in
general.
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GEOLOGIC BACKGROUND FOR GENETIC MODELING

Understanding the history of uranium movement and concentration within
the Earth’s crust throughout geologic time is essential to the genetic-
geologic model concept. Each of the many types of uranium deposits is the
result of a series of different processes that had some role in the ultimate
resulfant deposit of uranium in a specific geologic environment. These
processes taken as a whole gave rise to characteristic host rocks, alteration
patterns, mineralogy, and grade-tonnage ranges.

The average uranium content of the Earth is probably similar to that of
meteorites, but the uranium content of typical crustal rocks varies widely,
and nearly all these rocks are considerably enriched in uranium compared to

the mantle and core (Table 1). As an ubiquitous and highly mobile metallic



element, uranium has been concentrated into deposits in many different
igneous, sedimentary, and metamorphic environments. The resulting variety of
uranium deposits occur in widely different forms, rock and metal associatioms,
and grades. Most uranium deposits represent local concentrations much greater
than that of the average crustal rocks and probably contain uranium that has
been mobilized many times (table 1). Every deposit, therefore, represents the
culmination of a complex series of events or processes that can be viewed as
starting with the early evolution of the primordial Earth.

Although the location of individual deposits is most closely related to
properties of the host rock and the immediate source of the uranium, the
location of uranium—-rich provinces is probably related to much larger features
that involve the gross structural and geochemical evolution of the earth.

The concept of plate tectonics, as it has unfolded in the last few years,
yields an insight into how crustal rocks may have become enriched in uranium
and how at least some uranium-rich provinces may have developed. A detailed
discussion of Earth history and its relation to the evolution of uranium
deposits 1s not within the scope of this paper, although a brief summary may
be appropriate.

Four stages in the Earth’s history were particularly critical to the
segregation and concentration of uranium and to the types of deposits that
could be formed. These stages were (1) segregation of the sialic crust,

(2) the development of 1life, (3) the development of an oxygen—rich atmosphere,
and (4) the development of land plants.

1. Segregation of slalic crust

There seems to be no general agreement among geologlsts regarding the
details of the origin of sialic crust. There is agreement, however, that this

part of the crust is variably heterogeneous, forms the continental cratons,



Table l.-—Concentration of uranium in natural materials

[See also Klepper and Wyant, 1957, p. 91)]

Mean or range of
meana——ppm 0308

Material

Reference

640,000-880,000

6000

4500

2600

1200-1600
375-700
375
300
120-240
100-10,000

100

70-700

70-

15

2.0

1.4

1.2

1.1

.9-10

.2-4.0

.2

.005

. 0055
.0013-.003

.001

Uraninite

Ore from Schwartzwalder
mine, Colo.

Jabiluka ore

Average U.S. ore, 1963

Blind River-Elliott Lake
Witwatersrand ore
Rossing, Namibia ore
Swedish alum shale —
Florida phosphate

Sandstone ores

Nigerian riebeckite-albite
granite

Marine phosphate

Chattanooga Shale (Tenn.)
black shale

Conway Granite, (N.H.) biotite
phase

Volcanic glass

Acidic igneous rock
Shale

Carbonate rock

Mean crustal abundance

Bituminous coal, Applachians

Sandstone

Freshwater peat, Everglades (USA)

Porphyry copper

Mafic igneous rocksf lignite,
Northern Plains (USA)

Crustal abundance: range
Diorite

Ground water

Iron meteorites

Seawater

River water

E., J. Young (oral
. commun., 1978).

U.S. Atomic Energy
Commission (1973).

Finch and others (1973).
~=Do.

U.S. Bureau Mines (1970).
Finch and others, 1973.

~-Do.

~-Do.

MacKay and Beer (1952).

Finch and others (1973).

~=Do.

~<Do.

Finch and others (1973).
Green (1959).

Adams and others, 1959.
Finch and others (1973).

Z. S. Altschuler (oral
commun., 1978).
Finch and others, 1973.

2. S. Altschuler (oral
commun., 1978).

Bieniewski and others (1971).

Koczy (1954).

~-Do.




and is much richer in uranium and other radioactive elements than either the
oceanic crust or mantle. Presumably, this uranium enrichment was largely
accomplished early in the Earth’s history by a partitioning between the mafic
mantle rocks and more salic crustal rocks. Most uranium deposits have
probably been the result of both physical and chemical reworking of these
sialic continental rocks through anatexis and differentiation, on the one
hand, and through weathering, sedimentation, and leaching and redeposition
processes, on the other.

Accretion of later rocks to this early continental crust has probably
been accomplished by processes related to plate tectonics. Where oceanic
crust was subducted under continental cratons, heat and pressure caused
metamorphism, anatexis, and differentiation of both crystalline oceanic crusé
and marine sediments derived in large part from continental erosion. Material
stripped from the continents was, therefore, reworked and reunited with the
continental cratons. In so doing, it i1s likely that the more sialic and
uranium~-rich fraction probably was preferentially retained by the continents,
whereas some of the more mafic and uranium-depleted material was returned to
the mantle.

Radioactive decay within the uranium and thorium series and potassium
provides most of the heat now being generated within the Earth. Because the
continental crust is richer in these elements than are either the oceanic
crust or mantle, there is much more radiogenic heat generated per unit mass of
continental crustal rocks than in other rocks. When oceanic crustal rocks
were subducted under the edges of continental cratons, some of them evidently
became molten and rose through the crust to yield both intrusive and extrusive
igneous rocks. Not surprisingly, that some of these rocks underwent a certain

amount of differentiation and became further enriched in uranium. Within



continental cratons, large masses of uranium-enriched rock may not have been
able to dissipate radiogenic heat as fast as it was formed, and some of this
rock may have melted and become further differentiated. As with the molten
products of subducted rocks, the uranium-rich rock may have risen in the crust
to become intrusive and extrusive masses.

Early differentiation of a low-density, uranium-enriched, sialic
continental crust has probably piayed a most important part Iin the creation of
all uranium deposits. This differentiation was the first of a series of
preconcentration processes that have probably preceded the depositf@n of all
"economic uranium deposits.

2. Role of life

Paradoxically, primitive life forms on the Earth created two new and
entirely opposite environments that have been extremely important in the
redistribution of uranium. Near the middle of Proterozic X time, about 2400
million years ago, the so—-called oxyatmoversion occurred when life forms had
developed that liberated free oxygen, probably by photosynthesis. Shortly
after this time, bacterial organisms may have developed that could have
reduced sulfate and other sulfur species to HZS. The action of these bacteria
created environments of highly reducing conditions in extreme contrast to the
action of the oxygen-producing organisms. Because uranium 18 highly mobile
under oxidizing conditions and is generally immobile under reduciné conditions
at low temperatures, the importance of this aspect of certain living organisms
is highly evident.

Living organisms also concentrated organic carbon and, when they died,
thelr remains were incorporated in fine-grained marine sediments. Organic
carbon compounds are well-known concentrators of uranium by adsorption,

reduction, and chelation. As soon as oxidation liberated uranium from rocks
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to meteoric solutions in the Precambrian, the uranium began to migrate to the
seas and to be entrapped by organic-rich marine sediments.

The relation of living organisms to the organic-rich uraniferous
phosphate deposits that have formed in certain shallow, restricted marine
environments is not well known. The uranium occurs in the reduced form in the
apatite in these deposits. However, because oxidized uranium must have been
transported into these environmeﬁts by water, oxidation likely played an
important part in the creation of the uraniferous phosphates, which are as old
as the late Precambrian.

3. Consequences of an oxygen—-rich atmosphere

As noted above, the development of an oxygen-rich atmosphere was closely
linked to the development of oxygen-liberating living organisms. Once oxygen
was available, meteoric surface waters became strongly oxidizing. Weathering,
previously controlled largely by physical processes and pH imposed by COZ’
then became influenced by oxidation processes. Uranium, relatively insoluble
under reducing weathering conditions, became readily leachable under oxidizing
weathering conditions. Placer concentrations of easily oxidized uranium
minerals, such as uraninite, could not form or persist except under unusually
rapid transport or cold conditions. Transport of uranium in solution by
meteorically derived waters created the opportunity for a host of new
varieties of uranium deposits.

4. Consequences of the development of land plants

After the time of the oxyatmoversion and prior to the Devonian Period,
when land plants became abundant, most of the uranium liberated by weathering
conditions was carried to the sea by surface waters. Few, if any, continental
sediments are known to have accumulated supergene uranium during that interval

of time, probably because there was little terrestrial organic carbon either
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to concentrate the uranium directly or to serve as a nutrient for sulfide-
reducing bacteria. Nearly all uranium deposits in continental sediments are
assoclated in some way with organic materials and were formed after the
Devonian Period. Most of the uranium deposits we see today are probably the
result of a long, complex history of preconcentration processes, intermingled
with dispersive processes such as weathering. Some o0ld uranium deposits, such
as the uraniferous Precambrian qﬁartz-pebble conglomerates, probably were
preceded by only a few preconcentration steps or cycles. The uranium in more
recent deposits, however, could have undergone many cycles. These cycles are
too numerous, complex, and tenuous to expand upon here but there are, perhaps,
three prominent, although speculative, processes that should be mentioned.
These cycles involve (1) metamorphic, (2) igneous, and (3) sedimentary
processes.

Marine sediments are probably much more likely to become involved in
metamorphic processes than are continental sedimentary rocks. Whereas large
volumes of marine sediments may be either subducted or involved in collisions
between crustal plates, most continental sediments are probably destroyed by
erosion. For the most part, marine rocks are not highly uraniferous but there
are two types of marine rocks that could be metamorphosed and contribute
uranium to later rocks through metamorphic mobilization: carbonaceous shales
and phosphates, because these sediments can concentrate uranium from
seawater. Under metamorphic conditions, uranium may be difficult to separate
from phosphatic rocks, because apatite is fairly refractory,. but probably it
is easily separated from organic substances. Hydrothermal solution emanating
from metamorphosing carbonaceous marine shales, therefore, may have been a

significant contributor to certain uranium deposits in metamorphic terranes.
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According to simple, conventional plate-tectonic theory, metamorphic
zones of such sedimentary rocks should be localized near convergent plate
boundaries. Subduction related to convergence between an oceanic and a
continental plate would be the most likely mechanism to convey organic shales
into a metamorphic environment. Some uranium, however, could be liberated
where uraniferous continental rocks were thrust into metamorphic regions by
collisons between continental plates.

Cycling of uranium through igneous processes could occur along subduction
zones of oceanic crust or near the sutures between:holliding continental
blocks. Here, rocks already somewhat enriched in uranium might be drawn to
great depths, heated, partly melted, and thrust back to the surface as molten,
further enriched magmas. Such magmas might be emplaced as plutons, hypabyssal
bodies, or extrusive rocks; or, they might undergo further differentiation and
give rise to uranium-rich hydrothermal solutions.

Farther within the continental craton, rocks melted locally at depth in
the roots of the craton might undergo evolution similar to that noted above,
giving rise to similar suites of rock but that could, because of their sialic
derivation, be even more sialic and highly differentiated.

The continental sedimentary cycles may be the most complex uranium
redistributing cycles of all. Presumably, most of the uranium in continental
sedimentary rocks was derived orginally from metamérphic or continental
crystalline and extrusive rocks. Erosion and leaching of these rocks yielded
uranium to meteoric solutions which then provided transport to sites in
continental sediments where the uranium was redeposited by geochemical
processes. Subsequent cycles might then have only continental sediments as
both the immediate source and host rocks but, ultimately, some deposits must

be destroyed and the uranium delivered to the sea. Here, the entire process
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involving organic shales, subduction, and so forth, can start all over
again. Some deposits, particularly those in island arcs, such as in Japan,
could have undergone several complete cycles of this type before coming to
temporary rest where we see them today.

The significance of this discussiotho genetic modeling for uranium-
resource assessment is to stress the importance of preconcentration and
precursor conditions to most deposits, particularly to those that contain
uranium of economic grade. We commonly cannot reconstruct all these
conditions in any detail, but their importance to the genesis of deposits
should not be underestimated. By reconstructing the basic géologic history of
a region, we may be able to determine its basic favorability for undiscovered
uranium deposits.

In the geochemical cycles of uranium in the Earth’s development, a first
genetic distinction can be made as to whether a deposit 1s either syngenetic
or epigenetic. Syngenetic deposits were formed contemporaneously with the
host rock. These uranium deposits commonly are the same shape as the host-
rock body. The uranium is fairly uniformly disseminated and generally is
closely related to the allogenic mineral phases of the host rock. Syngenetic
deposits are commonly low grade, such as uraniferous granite and marine black
shale, but a few are high grade, such as uraniferous parts of pegmatites.
Genétic models of syngenetic deposits are generally more simple than those of
epigenetic deposits, as mineralization itself is but a single stage, and hence
the determination of favorability for uranium resources is also more simple.

Epigenetic deposits, on the other hand, are more complex for they were
concentrated after the host-rock formation, commonly distinctly afterwards.
Furthermore, they have many shapes, occur in many geologic environments, have

complex mineralogy, and have wide ranges in grade, both among and within
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deposits. Two and commonly more stages of uranium concentration are evident
in epigenetic deposits. Thus, the prediction of occurrence of unfound
epigenetic deposits and the projection of mineralized rock into unexplored
ground are far more difficult and subject to chance than for syngenetic
uranium. More controversy surrounds the genesis of epigenetic deposits than
syngenetic ones, and it is fair to state that the geneslis of no single
epigenetic deposit can be absolufely proven. Thus, the design of genetic
models for epigenetic deposits must be flexible to accomodate variable genetic
concepts. It is the epigenetic deposit at which genetic modelling 1s aimed,
and these modéls will prove most useful in evaluating favorability for

undiscovered uranium resources.

THE CONCEPT OF A GENETIC-GEOLOGIC MODEL

Uranium has been concentrated by various processes into deposits in many
different igneous, sedimentary, and metamorphic environments. For a given
deposit, or group of like deposits, these processes can be presented in a
chronologic sequence of genetic concepts. Each process has left behind
evidence in the form of observable features in the host rock and its general
environs. These geologic features can be woven into a basic geologic story
that forms the geologic occurrence base. The genetic concepts and their
corresponding geologic bases are dependent upon one another, and the two can
be molded into an interactive chronological matrix that we call the "genetic-
geologic" model. It is this genetic—-geologic model that we use as a framework
for using geologic and related data to evaluate favorability of an area for

undiscovered uranium deposits.
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Genetic Scheme of Process Stages

General processes

A sequential scheme of chronological process stages is formulated here to
include the entire genetic history of an uranium province and its contained
uranium deposits. This scheme expands b;yond that used for resource modeling
by Ruzicka (1977). The eight general process stages are as follows:

1. Precursér processes

IT. Host-rock formation
I1I. Host-rockfpreparation

IV. Uranium—-source development

V. Transport of uranium

VI. Primary uranium deposition
VII. Post—deposition modification
VIII. Preservation

These various stages in the model are intended to be an all-encompassing
general framework in which to list every event, condition, and process that
influenced mineralization. A few comments on each stage will clarify the
kinds of concepts that are intended under each heading. Furthermore, these
comments will indicate the kinds of geologic evidence that were used to
develop the genetic concepts.

Precursor processes

The precursor process generally produced regional features that describe
the geologic history prior to host-rock deposition. These processes may
extend back to the Earth’s formation when certain parts of the crust became
more rich in uranium than other parts——in other words, the creation of a
uranium-rich province. Such a uranium province may have been modified later
by various geologic processes during which some uranium deposits could have
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been formed. Furthermore a given uranium province may have been separated
into smaller geologic provinces or domains, and some of these were separated
by tectonic plate movements and are now on different continents. For many
types of deposits, parts of Precambrian shield areas and orogenic belts are
provinces; for others, forelands are more likely than geosynclines; and
continental basement rocks are more likely to be uraniferous than are oceanic
rocks, except for carbonaceous sﬁale and phosphate. The precursor processes
may be represented by smaller scale features and may be more closely related
in time to the host rock formation, such as the development of intermontane
basins, caldera centers, and plutons.

Some precursor products may have become subsequently a source for
uranium. For example, deep—seated igneous activity may have produced a labile
uranium source rock that was later to become a provenance for sediments, or to
be exposed to weathering. Ancient uraniferous marine shales have in some
places acted as protore for later metamorphic uranium deposits. Sandstone-
type uranium ores of early Precambrian age have even been postulated as
sources for later ores in faulted and metamorphic environments at Gabon
(Diouly-0 and Chauvet, 1977).

The usefulness of precursor events, particularly those of regional
nature, may be limited in faﬁorability assessment in some areas, for example,
the extension of a known uranium belt into deeper parts of the same basin.

Host-rock formation

The history of the host-rock formation bears closely on the uranium
concentrating process. The initial host-rock components—-both reactive and
inert chemicals—-initial porosity and permeability, and relative stratigraphic
position and geologic age are important attributes to consider. For certain

rock types, because thelr genetic history is tied closely to that of a
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particular kind of uranium deposit, the rock name becomes part of that uranium
deposit type, such as uraniferous marine black shale.

For certain types of sedimentary host rocks, for example sandstone, this
stage might best be divided into three substages: (1) source of sediments,
(2) transport of sediments, and (3) depoéition of sediments. For igneous and
volcanic host rocks, one or more magmatic substages and possibly an
accompanying sedimentary substagé may be required to model the uranium
deposits.

Host-rock preparation

Preparation of the host rock may be the most {important step in the
mineralization process. In some host rocks, preparation begins during rock
deposition or soon thereafter; in others it is much later, and there may be
several stages. Diagenesis may play an {important role in the preparation of
sedimentary and volcanic host rocks. Tectonism is important not only in some
sedimentary rocks, but is vitally important in brittle igneous and metamorphic
rocks that are host for breccia and fissure-vein deposits. The absence of
tectonism can be critical, such as for uranium deposits in sandstone.
Weathering, thermal activity and metamorphism are important in soluble rocks
to create voild space for sites of mineralization, such as replacement of
limestone or dolomite by chert to form solution breccia. Alteration that
precedes introduction of uranium-bearing solution is also part oé rock
preparation. Clearly, the preparation of host rock consists of both chemical
and physical changes.

Uranium-source development

As noted above, the potential source of uranium may develop before host-
rock deposition, as in uranium-rich granite plutons and pelitic rocks——the

first for later weathering of uranium and the second for later release of
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uranium during metamorphism. Other sources, such as contemporaneous
volcanism, may develop during sedimentation of the host rock. 1In still
others, an even later development (commonly volcanism) may provide a viablé
source for uranium.

Transport of uranium

For most deposits, a plumbing system was necessary to transport uranium
and accompanying metals and other components from theilr source or sources to
where they accumulated. But evidence for the system and transporting fluids
is most commonly faint if detectable at all. An interface between two fluids
of differing composition is commonly called upon to account for shapes of
tabular ore bodies and their boundaries with barren rock. Most important to
uranium movement are hydrologic systems; unfortunately, far too little is
known about the paleohydrology of the enviromment of uranium deposition.
Nevertheless, knowledge of present ground-water conditions, recharge points in
both present and postulated past systems, a possible hydraulic-gradient
condition (such as dip), potential conduits (location of aquavoids, faults,
joints), and discharge points for the system are important pieces of evidence
to list. Timing is also important; there must have been communication at the
proper time between the proposed source and the present site of the uranium
deposits.

Primary uranium déposition

Uranium minerals are deposited by many processes, including adsorption
and absorption; reduction by organic matter, gases, or sulfides; evaporation;
or temperature and pressure changes in hydrothermal igneous and metamorphic
systems. The primary uranium minerals may be either low valent, such as
uraninite, pitchblende, brannerite, uranothorite, and coffinite formed in

reducing environments, or high valent, such as carnotite, soddyite, and
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schroeckingerite formed in near—surface evaporative and calcrete deposits. In
organic— and phosphate-rich host rocks no crystalline mineral in which uranium
is an essential coAStituent may be present. Evidence of alteration
synchronous with uranium mineralization is commonly more pervasive and
widespread than the ore body, such as in a roll-front; this is an attribute
of great importance.

Some primary uranium ores are closely related to the source and
deposition of other metals, such as iron, vanadium, gold, molybdenum,
selenium, chromium, nickel, and thorium, and other substances, such as organic
materials (humate). Thus, the deposifional history of these materials may be
important to include in the model, particularly if their presence as
geochemical halos extends far beyond the known uranium deposits.

The presence of uranium minerals, either observed or indicated indirectly
by radioactivity, is thought of by many to be the most dilagnostic evidence for
the process of uranium mineralization. From a viewpoint of evaluating
favorability of a rock or geologlc setting to contain economic deposits of
uranium, however, the mere presence of uranium minerals must be used with
caution, if at all. Minor occurrences of uranium are far too widespread to
place great confidence on their use in favorability evaluation. This problem
is discussed further under a section dealing with favorability versus
probability of occurrence.

Recognition of the mineralization processes may not be as useful for
determining favorability as premineralization processes because mineralization
processes Were commonly too localized at the site of uranium deposition. From
the viewpoint of understanding the geochemistry of ore deposits themselves,
however, genetic modeling of mineralization will be important. For our
purposes of resource assessment, the primary uranium deposition stage will be

used chiefly for model selection.

[, %)



Post—deposition modification

Modification after primary deposition can either increase or decrease the
uranium grade. Some deposits have been completely destroyed, and the uranium
either transported to the ocean or redeposited elsewhere, commonly as a
different type of deposit. For example, some humate-related tabular deposits
in the Westwater Canyon Member of the Morrison Formation in the San Juan Basin
were partly to completely destro&ed by oxidation since mid-Tertiary time.

Some of the uranium from these deposits was redistributed as roll-type
deposits (stacked or post-fault ores) whose clasgical C-shapes were modified
by permeability variations related to fractures and sedimentary structures and
textures. Further modification related to the present-day conditions is a
part of the preservation stage.

Preservation

Preservation of the deposits is essential. It is dependent upon
protection by stable overburden conditions, favorable climatic conditions, the
erosional cycle, ground-water conditions, and time. Some otherwise favorable
ground may be unfavorable because of failure of preservation. If there is
evidence of destruction of deposits, one should look for new loci of
concentration, such as downdip, along tectonic structures, and in other host
rocks.

Chronology of Process Sfages

The process stages listed above may be neither distinctly separate, for
they commonly overlap in time, nor always in the identical chronological order
for all types of deposits. This is especially true for the stage of uranium-—
source development, which may occur in surges that precede, accompany, or
follow host-rock formation. There may be other complications in timing and

because of these complications modeling of each type of uranium deposit will
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require suitable arrangement of stages to fit the best interpretation of the
geologic history of that deposit. The genetic scheme proposed here is
designed to be flexible In order to accommodate such variations. We will
illustrate this flexibility in dealing with variations by giving a few
examples of syngenetic, modified-syngenetic, and epigenetic deposits.

Typlcally, syngenetic deposits are characterized by few distinct stages,
as shown by the example of uraniferous parine black shale on figure 1. In
these deposits, uranium was concentrated out of sea water that derived its
uranium from subaerial weathering of adjacent highlands, or possibly from
_ contemporaneous volcanism. Moreover, the uranium was precipitated along with
host rock so that host-rock formation, rock preparation, uranium transport,
and primary uranium deposition stages merge into a single tlme span. The
nature of the uranium bond to the organic matter in the shale and the near
impermeability of the rock have allowed little if any modification since
uranium deposition, and preservation has been almost guaranteed under normal
weathering conditions. Thus, in terms of time the genetic model for
uraniferous black shale is essentially a single—-stage model that has only
minor pre—~ and post-depositional stages.

Syngenetic deposits in quartz-pebble conglomerate can be explained by a
simple model as shown on figure 2. Note that modification of the original
deposits by low-grade metamorphism is a distinct stage. This modification has
been interpreted by some workers in the past as the primary mineralization
stage, but this view does not fit the dominant character of the deposits. The
moderate permeability of these ores had led to some destruction of ore
minerals in the zone of weathering during the latter part of the preservation

. stage.
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PROCESS STAGES

Precursor processes
Uranium-source development
Host-rock formation
Preparation of host rock
Transport of uranium
Primary uranium deposition
Modification

Preservation

Absent

Figure l.—-Probable timing of process stages for uraniferous marine

black shale.
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PROCESS STAGES

TIME--——=>

Precursor

Uranium-source development
Host~-rock formation
Preparation of host rock
Transport of uranium
Primary uranium depositi;n
"Modification

Preservation

—— ——— . ——

Figure 2.—-~-Probable timing of process stages for quartz—pebble

conglomerate uranium deposits.
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Deposits of low—grade uraniferous phosphate are generally syngenetic as
exemplified by the Idaho Permian phosphate deposits on figure 3A. However,
other phosphate deposits are richer in uranium because two episodes of uranium
concentration occurred. The first was syngenetic similar to the Permian
phosphate; the second was a distinctly later stage related to preservation, as
in the model of the so—called "land-pebble" phosphaté deposits in Florida
shown on figure 3B. These deﬁosits with two stages of uranium concentration
might be considered epigenetic because the second stage was much later than
the first and was the actual "ore-forming" process. They can at least be
called modified-syngenetic.

Epigenetic deposits have had more complex histories than most syngeﬁetic
deposits. In terms of time, epigenetic deposits commonly display seven or
more distinct stages plus the overprint of érolonged or multiple surges in the
development of the uranium source. To illustrate their history, clear
separation of host-rock history from that of uranium may even be desirable;
and in some deposits, uranium deposition may require more than one stage.
Figure 4 illustrates generalized timing of processes that led to the formation
of most epigenetic deposits in sandstone. Figure 5 more specifically
describes the formation of a particular type of sandstone deposit--the tabular
humate uranium deposit. For this type of deposit, we separated the history of
the host rock from that of the uranium deposit, because they complexly overlap
in time. Furthermore, by separating these histories as we have, we can more
readily handle two possible uranium sources and alternative ideas about the
timing of the alteration of host rock, including a separate stage or substage
that was contemporaneous in part with primary uranium mineral deposition. The
actual time scales for the host rock and uranium deposit were probably

different; neither was the timing of the first stage of primary uranium
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PROCESS STAGES TIME—-====>

(A) Idaho Permian phosphate

Precursor ——
Uranium-source development - - ————
Host-rock formation @ ————-
Preparation of host rock = ————-
Transport of uranium —_——
Primary uranium deposition @~ = = =—==—-
Modification ’ - -

Preservaton - — m —————

(B) Florida land-pebble phosphate

Precursor =000 0@————-
Uranium—source development - - ———— —_—

Host-rock formationm = ~—m——

Preparation of host rock ——
Transport of uwranfum = -—-———-

Primary uranium deposition N ——
Modification = eeme——
Preservation ———

Figure 3.--Probable timing of process stages for (A) Idaho Permian
uraniferous phosphate, and (B) Florida land-pebble

uraniferous phosphate.
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PROCESS STAGES TIME-—-

Precursor processes ——————
Host—-rock formation

Preparation of host rock

Uranium-source development
Transport of uranium

Primary uranium deposition
Post-deposition modification

Preservation

Figure 4.--Generalized timing of process stages for epigenetic uranium

deposits in sands

tone.
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- PROCESS STAGES TIME===—~ >

Precursor conditions and events ==———
Host-rock
Source of host-rock constituents - mm———— -

Transport of host-rock constituents = = -= —=————— ———0n

Deposition of host rock

Alteration and preparation of host

rock
Uranium deposit

Source of uranium ? ?

Transport of uranium

Primary uranium deposition

Modification of primary ores

Modification of primary

and redistributed deposits

Preservation

Figure 5.——Possible timing of process stages for tabular humate uranium deposits.
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deposition necessarily just after the last stage of the host rock. Note that
there appear to be at least 10 separate stages in the humate uranium model.

We close our discussion of the ability of the genetic scheme to
accommodate variations in time by illustrating one of the most complicated
types of deposits of all--the so—called "unconformity-vein type" (figure 6).
This preliminary attempt to identify the possible processes that formed these
poorly understood deposits identifies several episodes of host-rock and
uranium~deposit formation, some of which overlap. More specific examples of
this type of deposit would illustrate more precise stages, but this crude
attempt suffices’ to illustrate again the complex nature of the chronology of
uranium-deposit processes.

We end this discussion with the following caution concerning the use of
the genetic scheme. If one plans to build a large number of models to use as
a means of identifying a prospect with a specific model, the ordering and
labeling of stages must be standardized to allow computerized search for
common and dissimilar characteristics to facilitate the use of a bank of

genetic models.

The Geologic Base and its Interaction with Genetic Concepts

The genetic concepts are generated from interpretations based on
observations of the geologic setting (including mineralogy and geochemistry)
of a given type or group of uranium deposits with similar characteristics.
The development of a genetic model most logically goes from field evidence and
related laboratory analyses to the conceptual ideas about the genesis, but
because of our basic knowledge of the science of uranium geology, some genetic
processes can be inferred without any field evidence. The evidence may not
yet have been observed. In some processes, the evidence may have been

destroyed, or be far removed from the site of uranium occurrence, but

29



PROCESS STAGES TIME---—->
Precursor 0 =—=——-
Protore host-rock formation @ =  ———=-—-
Prograde metamorphic host-rock

preparation =~ =————
Retrograde metamorphic host-rock

preparation —————

Uranium-source development
Uranium transport  ———e—e———

Primary uranium deposition === ===———- —_
Modification at unconformity @ - —m—e—e
Modification after burial _— ————

Preservation —_— e ————

Figure 6.——-Possible timing of process stages for unconformity-vein type

uranium deposits.
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nevertheless the process must have taken place. Fundamentally, the geologic-—
occurrence base is described first and the genetic model follows, but during
the development of the genetic model an interactive feedback loop is
established between the two, as dlagrammed on figure 7. This feedback points
out a strength of our system of modeling in that it forces the field geologist
to think about the entire process of mineralization.

The geologic-occurrence basé consists largely of the three-dimensional
empirical relationships of the known deposits to their surroundings. The
fourth dimension, time, is introduced by listing the geologic—occurrence data
in the chronological order of the genetic model. Some geologic data do,
however, have a bearing on time relationships; both field evidence for timing
of geologic events and laboratory evidence of mineral age are important to

developing a more accurate genetic model.

MODEL BUILDING

The ultimate goal in our resource modeling is to build genetic-geologic
models that represent distinct classes of deposits that have had similar
genetic histories. Because of significant regional variations and the
uncertainty of genesis of most classes of deposits, construction of regional
representatives of a class is more useful at this time. When we have
constructed enough models for representative areas we may be able to integrate
them into acceptable general models for each distinct class of deposits.

The building of genetic—geologic models can be broken into the following
steps: (1) decide on the type of deposit to model and set the geologic and
geographic boundaries; (2) prepare a general scenario to identify the key
events of the genetic history of the deposits; (3) compile the geologic
evidence and related processes into the genetic scheme proposed above; and

(4) finally, prepare an epilogue stating the unsolved problems and inadequate
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observations encouptered. More than one iteration of the initial model may be
required to arrive at an acceptable provisional model. The number of elements
to this model may total more than 100, many of which are not diagnostic for
the determination of favorability. Either by subjective selection or, as we
propose, through statistical weighting, the key elements need to be ideﬁtified
to arrive at a shorter working model.

After a group of deposits has been selected to model, a genmeral narrative
statement should be prepared to describe briefly in a chronological order the
salient points of "the geologic occurrence and genetic concepts of these
deposits. Variations in genetic concepts should be discussed, and, if
necessary, the reasons for choosing one over others should be given. The
general narrative of the model serves as an introduction to the more detailed
model itself.

Genetic—geologic uranium-deposit models are built of pertinent geologic
data tied together by conceptual interpretations of how those data can be
related in time to processes before, during, and after uranium deposition.

The available data concerning the geologic setting of the specific deposit or
deposits are assembled in the eight—step chronologic order outlined above;
this part of the model is designated the geologic—occurrence base, which
becomes the second column of the matrix format shown in table 2. From the
geologic—occurrenée base, more generalized process—-oriented genetic conceptual
statements are presented in the first column of the matrix. The genetic
concepts are placed to the left of the geologic base even though a reverse
order seems more logical. Two practical reasons for doing this are related to
the mechanics of listing entries under each heading. First, for many genetic
concepts more than one bit of evidence supports the concept, and thus the flow

of the outline from left to right and top to bottom is smoother and more

33



Table 2.——General genetic-geologic model and application matrix format

The genetic-geologic model Application
Stages Genetic Geologic Questions Required
concept occurrence data
base
I. PrecursSor ecssccecesssceX X p.4 X
II. Host-rock formation....x: X X X

III. Preparation of host
TOCKeoeooeosoooonoesessX X X X

IV. Uranium-source
developmenteseeceeeeesX X X X

V. Transportation
Of uranium.-.........x X X X

IV. Primary uranium
depositionecesccesseex X X X

VII. Post-deposition
modification.........x X X X

VIII. PreservationeeeececeseeseX b < x X
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consistent toward increasing detail. Second, the question set to be later
listed in the third column is more closely tied to the geologic evidence and
needs to be adjacent to it.

In the actual preparation of the model, the ordinary outline form is used
to enter the material related to each stage. Once a heading is established it
should be carried to the right with appropriate corresponding statements in
the next column. The statemeﬁts within the outline should be brief full
sentences that describe the essence of the ideas and evidence. A definite
grammatical style is required for each of the two parts of the matrix to
insure uniform construction. The geologic base is to be described in the
present tense because it concerns observations that can be made today. The
genetic concepts, on the other hand, are to be stated in the past tense for
they describe events that have taken place in the past. Within each stage the
statements should be placed in a chronological order, if possible, from the
oldest to youngest event or process. An example is shown in table 3.

With today’s state of knowledge, even the best models that can be devised
will have some processes that are controversial or speculative. If there is
more than one genetic concept for certain data, each concept may be placed in
the model as alternatives to be tested. Some important aspects may be omitted
because they have not been recognized; others may be misinterpreted for
various reasons. In the best models that can be devised, therefore, there may
be both omissions and imperfections. In addition, extraneous geologic
observations may be included that can be neither related to nor disassociated
from the genesis of deposits. They should remain as parts of the model,
however, because to omit them from later testing without adequate

justification would be presumptuous.
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Table 3.--The precursor process stage of the tabular humate—related

uranium deposit model, San Juan Basin, N. Mex.

(modified from Granger and others, 1980)

Genetic concept

Geologic base

A.

Precursor processes

1. A uranium-rich province
developed in and south of the

San Juan Basin prior to host-rock
deposition.

2. An extended period of marine

and later dominantly continental

deposition of red beds took place
on a broad stable platform.

3. Host rock deposition was
preceded by uplift along the
margins of the platform,
~perhaps coinciding with shallow
downwarp of the depositional
basin.

la. Precambrian crystalline
basement rocks contain anomalously
uraniferous zircon.

1b. Regional basement rocks are
abnormally uraniferous.

le. Uranium deposits occur in older
(Paleozolc, Triassic, earlier
Jurassic) and younger (Cretaceous
and Tertiary) rocks in the region.

1d. Lead—-isotope studies show that
regional basement rocks have lost in U
in the past.

2a. The underlying strata
constitute a sequence of dominantly
marine Paleozoic rocks overlain by
dominantly continental lower
Mesozoic rocks.

2b. The host rock is part of a thick,
dominantly red-bed sequence of
sedimentary rocks.

2c.
rocks as well as of the host rock is
generally low, less than 5°.

3a. Distribution and thickness

of the Jurassic Westwater Canyon
Member of the Morrison Formation
roughly coincides with the present
form of the southern San Juan Basin,
indicating downwarp prior to and
during sedimentation.

3b. Sediment-transport directions
indicate a positive area to the south
of the Cordilleran foreland margin.
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Some parts of a process stage——elther im the genetic concept or geologic
base~-may require justification or explanation that would clutter the
presentation of the model. Thus, these explanatory statements should be
listed in an appendix to the model and identified by the corresponding outline
letter—number code such as IA2. This will also facilitate recall of
explanatory notes if the model is computerized.

In assembling a model frbm the geologic base, incompleteness of the
genetic history will commonly become evident. This, in turn, suggests that
additional geologic data are required or that existing data have not been -
adequately ‘interpreted. In this manner, the dynamic feedback loop is
maintained between the two parts of the model, which can result in constant
improvement of the model as new data and improved interpretations become
available. The kinds of new data and research needed should be listed and
discussed in the form of an epilogue at the conclusion of the model report.

For deposits poorly understood, this epilogue may be the most important aspect
of model building.

The initial provisional model will 1ikely contain tens of parts to
possibly a hundred or more parts, but only some of these will prove to be
ultimately useful in its application. In other words, the model will require
"fine-tuning" in order to be predictive. The next section addresses this
aspect of our research on modeling for determining favorability, eventually
leading to the end-use of estimating undiscovered uranium resources by —~

extending available grade—tonnage data in control areas to unknown but similar

areas quantitatively characterized as favorable.
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FAVORABILITY .EVALUATION
Application of the Model
Once constructed, a genetic-geologic model can be used in various ways to

evaluate favorability. 1In the simplest case, the model can be used to
evaluate a region in a purely subjective manner by arbitrarily deciding how
well the region fits the model. One could go a step farther and subjectively
assign relative weights to each part of the model and thereby derive a
"perfect" score for a control area. Based on this score, an unexplored area
could be similarly scored and evaluated. A formal system called “Prospector"
(Duda and others, 1978) uses such a weighting scheme, and the genetic—-geologic
model could be "prospectorized". As part of our research, we have designed a
different method called geologic-decision analysis that is based on a logical
framework of questions that relate the factors that comprise each genetic-~

geologic model.

Questionnaire and the Logic Circuit

A particular genetic—geologic model is a tool for assessing the
favorability of an area to contain uranium deposits of a certain grade and
slze——1in essence, an estimate of the undiscovered uranium resources. To do
this, we have devised a system of questions that correspond to the geologic
base and genetic concepts of the médel (the third column in the matrix shown
in table 2). Answers to these questions provide a means of comparing test
areas with a given control area. The questions are asked in a uniform manner
so that they may be answered in the positive (+1), in the negative (-1), or as
don’t know (0). This ternary logic system is discussed in detail in Part II
(McCammon, 1980). Questions that need to be answered by specifying some

numerical quantity must be phrased to conform with the above scheme.
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Examples of some questions asked that relate to the model part described
above are shown in column 2 of table 4.

The geologic attributes and their corresponding questions from a model,
such as exemplified in table 4, can be classified as (1) strictly necessary,
(2) sufficient, or (3) indeterminate. Those questions for attributes
necessary for the presence of a stage are multiplicative (in a logic sense)
and are expressed in the generaiized circuit by an "AND" relation (fig. 8).
Those questions for attributes sufficient for the presence of a stage are
additive (in a logic sense, not arithmetic) are expressed by an "OR"
relation. The "NOT" relation is used to include relations for which absence
is favorable and expressed either as a necessary or sufficient attribute. As
an alternative, but perhaps awkward, a question can be asked in the negative,
thus avoiding the use of the "NOT" relation. Attributes that are
indeterminate as to whether they are either necessary or sufficient are
treated separately outside of the circuit.

Applying this logic, we can construct a circuit as shown on figure 9 for
the questions given in table 4. In determining favorable precursor conditions
for this example, the questions are answered from the available data. In the
"uranium province", "pre-host rock setting", and "basin development" parts,
which are "OR" relations, only one positive (+1) answer is required to
establish their favorability. In the "stable platform" part, which is an
"AND" relation, a negative answer (-~1) indicates an unfavorable platform
condition. More complicated combinations of +1, -1, and O in a logic circuit
are described in Part II of this open—file series (McCammon, 1980).

In order for precursor conditions to be favorable in the example shown on
figure 9, the uranium province result must be affirmative as well as the three
parts of the sedimentation framework. In a simflar fashion, each of the other
genetic process stages are assessed as to their favorability.

39



Table 4.—-Application questions and required data for the precursor stage

of the tabular humate-related uranium deposit model (after Granger

and others, 1980) described in table 3

la. Do regional basement rocks contain

abnormally uraniferous zircon?

1b. -Are crystalline basement rocks
abnormally uraniferous.

lc. Do associated strata contain
uranium deposits?

ld. Do lead-isotope analyses of the
nearby basement rocks show loss of U?

2a. Are both marine and continental
strata represented in the sequence
beneath the host rock?

2bl. Is the host rock part of a red-
bed sequence of rocks?

2b2. Is there evidence of a primary
(early-diagenetic) red bed facies of
the host unit?

2cl. 1Is the regional dip of the host
rock <5°7

2c2. Is the regional dip of the
underlying rocks <5°2

3al. 1Is there evidence of basin
subsidence during Morrison
sedimentation?

3a2. Is the host rock within X kilometers
of the southwestern erosional edge of the

basin? (What is the shortest distance
in kilometers of this deposit from the
Dakota truncation of the Morrison?)

3bl. Is there evidence of uplift of areas

marginal to the Morrison depositional
basin?

3b2. Are average current directions in
the host sandstone as shown by cross-beds,

channel trends, lineations, or other
features toward the north or east?

la. Uranium analyses of zircons
from basement rocks.

1b. Uranium analyses of basement
rocks.

lc. Knowledge or location of
uranium deposits in associlated
strata.

1d. Lead-isotope analyses of
nearby basement rocks.

2a. Presence or absence of marine
and continental sequence below host.

2bl. Presence/absence of red-bed
sequence in host unit.

2b2. Knowledge of primary red-bed
facies in host unit.

2cl. Regional dip of host rock.

2c2. Regional dip of underlying
rocks.

3al. Evidence for subsidence during
host-rock sedimentation.

3a2. Distance from eroded edge of
host rock. :

3bl. Evidence of uplift of nearest
margin of basin.

3b2. Direction of resultant current
directions of host unit (cross-beds,
lineation trends, channel trends,
etc.).




(0) D—STAGE 1

A A -
A-B A+B A—D——A
B B
AND relation OR relation NOT relation

Figure 8.-General logic circuit elements and an
example of a general circuit.
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Geoscience Data Requirements

The data needed to answer each question posed for the model components
can be identified opposite each question as indicated by column 4 in table 2
and as illustrated in table 4 for a part of a model. These data may be
available from published reports and files of the user. Most data are
referenced geographically, commonly by latitude and longitude and somet imes by
altitude. Both surface and subsurface data are required, and their
distribution and density will be uneven. Subsurface data by their very nature
will be incomplete and mostly the application offa model will be restricted
partly by the kinds and amount of subsurface data available. 1In order to
extend the data base, the data may be contoured and thus interpolated between
data points and extrapolated beyond by utilizing trends and other geologic
principles. In many instances, use of the computer will facilitate this
step. The limits to which data can be extrapolated should be reviewed by a
knowledgeable geologist, and the areas beyond this limit should be excluded.

The types of data need to be grouped into like categories or sets to
facilitate field and laboratory collection and computer use. Data sets fit
broadly into the geological, geochemical, and geophysical groupings, but some
overlap 1s apparent. Data sets are required for both a control or training
area in which known uranium deposits occur and the test evaluation area.

Compilation of the data available will undoubtedly point to those a}eas

—

where more data are needed. Moreover, for certain questions to be answered an
ko

extensive research program may be indicated, for example, isotopic age

determinations.
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Grade-tonnage Data Requirements

Essential to both determination of favorability, and eventually the
estimates of undiscovered uranium resources, is a knowledge of the grade—
tonnage relations among the deposits of the type being modeled. Such
relations are poorly known because much of the data required to attain these
relations is in the hands of private companies and in the confidential files
of the U.S. Department of Energ&. Some data were not collected or measured at
the time "of eiploration and mining, such as for lower grade material,
éépecially that below 0.05 percent U308' Furthermore, most of the available
data are strongly influenced by economic factors and are for mining properties
rather than for geologically outlined deposits. Nevertheless, there are some
public data in a form which can be defined in general terms the grade-tonnage
distributions of United States uranium deposits. These data are the basis for

relating questions and process stages to uranium endowment.

Statistical Calibration of Questions and Circuits in Control Area
Many questions, especially those addressing a range in numerical data,

will require the setting of the range of threshold values that correlate with
favorable ground and its contained uranium deposits in the confrol area. This
calibration is best done using statistics and a computer program. Examples of
auestions of this nature in the tabular humate-related uranium-deposit model
include thickness of host rock units, and mudstone-sandstone ratios and the
number of mudstone-—sandstone alternations. Furthermore, the logical relations
among attributes for particular process stages may have to be modified. Such
modifications of attributes and their relations is anticipated and should

result in more workable models.
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The next step invelves the determination of the weights given to the
various stages of the model based on the known presence or absence of uranium,
in the designated control area. Where deposits of different sizes and grades
are geographically grouped, some parts of the model may prove to be more
closely correlative with the larger and higher grade deposits. The method of
calculating weights using geologic decision analysis is described in Part II
(McCammon, 1980). '

To provide a basis for estimating the uranium resources in the San Juan
Basin, which has been divided into square cells 4 km on a side (figure 10), ~
the Grants mineral belt has been selected as the control area and it has been.
divided into square cells 2 km on a side. The smaller size of cells in the

control area is desirable because of the greater amount of exploration data

avallable for the Grants mineral belt.

Application of Model to Test Area

The ultimate use of a model is to apply it to an unknown area. An
unknown area can be adjacent to a known producing area or it may be located in
a similar geologic setting far removed from a producing area. In testing for
likely extensions of known producing area, only parts of the model generally
will be used, whereas in frontier areas the complete model, will be
required. This is particularly true for the precursor stage of a model, whicﬁ
is regional in nature and thus 1s of little use in extending known producing —
areas.

For our present stage of research, we plan to apply the tabular humate-
related uranium—-deposit model based on the Grants mineral belt as the control
area to the unexplored parts of the San Juan Basin. Using weights derived for

the control area based on the data collected mainly from subsurface samples,
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the appropriate questions and the relations between then will be evaluated for
each of the unexplored cells. Using geologic-decision analysis, favorability
maps will be generated for each stage of the model. These maps will be
combined into a composite map that will provide for the overall favorability

of the unexplored part of the basin.

GEOLOGIC FAVORABILITY VERSUS PROBABILITY OF URANIUM OCCURRENCE
The presence of anomalous uranium is commonly used as an important

favorability factor. Although the presence of uranium can be interpreted as

demonstrating that the process of uranium concentration or mineralization has
taken place, its mere presence, using such a philosophy, may negate more
numerous and perhaps more important geologic indicators. For this reason, and
because the high mobility of uranium may cause it to be distributed in
anomalous concentrations far more widespread than in uranium mining districts,
we have omitted the use of uranium and related direct evidence from the
determination of geologic favorability.

Instead, the presence of uranium and related direct evidence of uranium
are to be used to aid in the determination of probability of uranium deposits
occurring in the area. If a given area is favorable but contains no known
abnormal concentrations of uranium, the prior probability for finding uranium
in any economic quantity in the area is low. However, if a large uranium
anomaly is detected later by a airborne gamma-ray survey, the probability of
uranium concentration is increased significantly but the geologic favorability
remains unchanged. Some factors that may be useful in arriving at estimates

of the probability of uranium occurrence are as follows:
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Actual presences of uranium

A.

B.

c.

Analytical test on rock samples

>0.001 percent U3O8
>0.01 percent U308
>0.1 percent U308

>1.0 percent U3 8

Mode of occurrence

1.

2.

Increased likelihood
a. Uranium mineral present
b. Prospect with no production
c. Mine with production
(1) <10 toms U308
(2) >10 tons U3O8
(3) >100 tons U3O8
(4) >1000 tons U308
(5) >10,000 tons U308

Decreased likelihood

a. Uranium only in scattered carbonaceous trash fragments, none

disseminated in rock

b. Uranium as a substitute element only in non-uranium mineral,

such as resistate minerals and uraniferous silicified bones

Number and extent of occurrences

Distance of area (cell) from known uranium deposits
1.

2.

Along extension of ore trend

Between known deposits
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- Indications of presence of uranium

A.

Adequate

Gamma-ray anomalies
1. Airborne radiometric
2. Ground

3. Drill hole

Radon anomaly

1. Soil gas
2.~Ground water
Radium

1. Springs

2. Soil gas

3. 0il-field brine
Helium

1. Soil gas

2. Productive fields
3. Ground water

Uranium in water and soil

Presence of elements closely associated with uranium deposit

1. Thorium (can be either positive or negative)

2. Vanadium

3. Coﬁper

4, Others (molybdenum, selenium, etc)

volume for significant tonnage

A.

B.

As a function of host-unit thickness

As related to structure
1. Sedimentary

2. Tectonic
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Preservation (Should this process stage be left in favorability model?)

A. Primary deposits

B. Secondary deposits

How these various factors will be used in estimating the (prior,
posterior, etc) probability of uranium occurrence is currently being
investigated. Obviously the topic needs much thought and research. For the
present study, a number of different approaches will be attempted. Perhaps
questions can be posed to answer the presence or absence of each factor in a
unit cell. A ratio betweéen the test and control areas could be calculated.
These ratios might be integrated statistically to give a range of probability

for a favorable area.

EXTENSION OF FAVORABILITY TO ESTIMATING UNDISCOVERED URANIUM RESOURCES
From the overall favorability based on a particular genetic-geologic
model, estimates of the undiscovered uranium resources in the area under study
will be generated utilizing probabilities determined according to one or more
schemes and a variety of grade-tonnage distributions. Thus, we expect that a
range of resource estimates will be generated based on different assumptions.
No single estimate should be regarded as the best estimate but rather, the

range of estimates provided by the method is expected to span the true

estimate.
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CONCLUDING REMARKS

We have attempted to show that the genetic aspect of the genetic-geologic
model is inseparable from the geologic evidence that supports it. Different
models can likewise be related in the sense that the process stages of
formation of a deposit in one environment may in part be similar to those of a
deposit in a different environment. Study of thése types of relationships
between different models may résult in the definition of environments not yet
examined for uranium occurrences. Eventually, we hope that genetic-geologic
modeling will lead to an acceptable genetic classification of uranium

deposits.
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PREFACE

This report is Part II of a U.S. Geological Survey Open-File Report
on the progress of research on methodology for assessing undiscovered uranium
resources; this research is an effort to devise‘;n alternate methodology
for the U.S. Department of Energy. For more background on this research,
the reader is referred to the Preface of Part I (Finch and others, 1980).
Part I deals with the philosophy and guidelines for building an interactive
matrix for relating the geologic characteristics of uranium deposits to the
various processes that formed them. The matrix is called a genetic-geologic
model. Each model is designed within a chronologic framework of events. It
is used to evaluate the favorability of occurrence of a particular type of
uranium deposit for a given set of data within a logical framework of a
series of questions. The overriding godl of this approach is to reduce
subjectivity in resource assessment. In order to integrate the favorability
of occurrence based on genetic-geologic models with grade—tonnage data on
known deposits and also to consider the prior probability of occurrence of
one or more deposits in an area, a computer-based method has been devised——
namely, geologic decision analysis, which is the topic of Part II, this report.
As the initial test of the method, a prototype genetic-geologic model has
been formulated for the tabular humate uranium deposits in the San Juan
Basin, New Mexico. A description of the model is the topic of Part III

(Granger and others, 1980) of this Open-File Report. Other models are being

built.



Critiques of each part of the three open-file reports (see below) are
solicited and should be mailed to the authors: U.é. Geologiﬁal Survey,:Mail
Stop 916, P.0. Box 25046 Federal Center, Denver, CO 80225. h
Part I--Genetic-genetic models——a systematic-approach to evaiuate geologic
favorability for undiscovered uranium resources, by W. I. Finch,
H. C.'Granger, Robert Lupe, and R. B. McCammon.

Part II--Geologic aeciéion analysis and its application to genetic—geolégic
models, by R. D. McCaﬁmon.

Part III—Genetic—geologic model for tabular humate-rated uranium deposits,
San Juan Basin, New Mexico, by H. C. Granger, W. I. Finch, R. E.

Thaden, and A. R. Kirk.
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RESEARCH ON URANIUM RESOURCE MODELS
‘ A PROGRESS REPORT
PART II GEOLOGIC DECISION ANALYSIS AND ITS APPLICATION TO
GENETIC-GEOLOGIC MODELS

By Richard B. McCammon

ABSTRACT

Because economic uranium deposits occupy a volumetrically insignificant
part of the rocks in which they are found, those who estimate pétential
uranium resources are primarily concerned with the factors that control their
distribuﬁion. Geologic decision analysis has been devised as a method
for integrating those factors defined for a particular genetic-geologic
model for the purpose of determining the favorability of occurrence of
undiscovered uranium deposits in unte;ted or partially tested areas.
Favorability is determined on the basis of the combined presence-absence
of the attributes that compose a particular genetic-geologic model. By
combining this favorability with grade-tonnage data for deposits in known
uranium areas and using estimates of the prior probability of occurrence,
one can estimate the undiscovered pranium resources in partially tested or
unknown areas. With this approach, geologic reasoning is explicitly incorporated
within the resource estimate. However, each step in the process can be
modified independently; thus, multiple estimates can be made and the limits

of uncertainty can be established for any particular genetic-geologic model.



INTRODUCTION
Perspective on uranium deposit occurrence

One of the few statements that can be made with confidence about uranium
deposits is that they compose a volumetrically insignificant part of
the rocks in which they are found. Granger and Warren (1978) stated, for
instance, that in roll-type deposits, the width of ore-grade uranium (>0.1l
percent U30g) in a typical roll-front deposit is commonly less than 10 m.

The oxidized tongue of the roll extends 10 km or more parallel to the
direction of ground-water flow. Whereas a roll-front deposit can cdmmonly
be traced for several kilometers, the tongues of oxidized rock can have an
areal extent of tens of square kilometers. Such oxidized tongues make up
but a small fraction of the sedimentary basins in which they are found,
and these basins commonly exceed several thousand square kilometers in
area. All in all, a uranium deposit makes a difficult target.

Not surprisingly, considerable attention has been given to searching
for indicators that effectively increase the size of targets offered by
uranium deposits. Geologic factors that control the occurrence of uranium
deposits ultimately should prove most valuable for assessing the undiscovered
uranium resources in a region.

The basic situation is shown in figure 1. An ore body, (A/1000),
occupies an insignificant fraction of an area, A, being evaluated. Surrounding
the ore body is a larger area, (A/100), which could reflect a geochemical
halo associated with the ore body. For a roll-type deposit, such an area is
represented by the zone of pyrite redeposition. Recognizing this fact increases
the size of the target and, therefore, increases the chances of discovery
in exploration or increases the reliability of a resource estimate based

on geologic evidence. Surrounding the area of mineraliztion is a larger area,



° A/100

A/1000

Figure l.--Diagram which shows the partitioning of an area, A, which

contains favorable area, (A/10), which contains favorable "target",
(A/100), which contains concealed uranium ore body, (A/1000).



(A/10), which represents the favorable ground in which the deposit occurs.
For a rolltype deposit. this could include the area underlain by a porous,
permeable, fluvial sandstone unit.
This type of reasoning justifies broad. regional-scale, geologic
mapping to identify, classify. and delineate areas favorable for the occurrence
of uranium deposits and justifies detailed geologic and geochemical investigations
in and around uranium ore bodies to identify characteristics that reflect
the proximity of these deposits. Because of the diverse types of data
collected in such studies, a quantitative method must be devised to identify
areas favorable for the occurrence of deposits and to estimate the undiscovered

uranium resources, if any, in these areas.

Nature of the data

Mounting evidence suggests that much of the information collected in
studies related to the occurrence of uranium deposits is important only in
a qualitative sense. With respect to porosity, for example, one needs to
determine only whether the rock can be characterized by a certain porosity
or whether it lacks that porosity. With respect to rock alteration, one
must determine ony whether the rock has been altered. These are two of
many examples that could be given to illustrate that presence or absence
is all that must be known about most geologic factors considered relevant
for establishing the favorability of occurrence of a uranium deposit.
Thus, recognition criteria for evaluating favorability can be established

by reducing all data to a ternary form, that is, presence, absence, or



unevaluated. -The last category is important for borderline situations in
which presence or absence is difficult to determine and for situations
in which some parts of the data are missing. A ternary classification
scheme does not imply that measurements of rock properties are irrelevant.
On the contrary, the available data are critical in determing whether a
particular attribute is judged as present or absent. For example, the
concentration of a trace element in a rock sample could be considered as -
being indicative of the nearby presence of a deposit if the concentration
¢

exceeds some specified threshold value. Threshold values should not be
considered as fixed quantities however. As more data are collected in an
area, such threshold values are likely to be changed.

Once it is decided how the data are to be reduced to a ternary form,
presence can be assigned the value, +1, absence, the value, -1, and unevaluated,
the value, 0. This form of encoding the data is readily adapted to subsequent

computer processing and is especially useful for handling large numbers of

attributes.

Need for a model as predictor

In the ideal situation, the existence of a uranium deposit at depth at
a location would be established on the basis of the combined presence-
absence of a finite set of measured attributes. In addition, in the absence
of their combined presence—absence, the presence of a deposit would be precluded.
Such a set would be considered necessary and suféicient and would constitute
perfect discrimination; that is, a deposit would not occur without the
combined presence—absence of the set of attributes and correspondingly, it
would always occur with the combined presence-absence. The closest to an
ideal example of an attribute whose pfesence—absence is necessary and sufficient

is the humate in the Grants Mineral Belt, New Mexico; the humate is authigenic



carbonaceous matter contained in a sandstone host rock.

It is more realistic to assume, however, that the combined presence-
absence of a set of attributes at a location is more likely only to favor the
presence of a uranium deposit rather than to locate a deposit. Thus, if an
.altered, porous, permeable, low-dipping sandsﬁone body is identified at the
outcrop, this would be interpreted as being highly favorable for the presence
of a roll-type uranium deposit downdip. There is no certainty of the presence
of a uranium deposit attached to the observation; for instance, the presumed
downdip roll-front, even if it exists, may be barren of uranium. Conversely,
an unaltered, nonporous, impermeable, steeply dipping sandstone body would
be interpreted as being unfavorable for the presence of a roll-type uranium
deposit downdip. However, the pesence of the sandstone does not preclude
the possibility that downdip, due to faulting, facies change, or some
other condition, an uranium deposit of some other type may be indeed present.

At present, we do not know of any single attribute or set of attributes
whose combined presence-absence is necessary and sufficient for establishing
the presence of a uranium deposit. Therefore a logical framework is needed
for inferring, from the combined presence-—absence of a critical number of
attributes, the likelihood of occurrence of a particular uranium deposit-type.
Such a framework has been embodied in the concepts of the genetic-geologic
model, which was described in Part I (Finch and others, 1980) of this Open-File

Report.

Definition of a logical framework
Because our knowledge of uranium deposits is incomplete, an uncertaintz
is necessarily inherent in any form of logical relationships we may propose
with respect to a particular genetic-geologic model. Even in areas where
uranium deposits occur and iarge amounts of information have been collected,
we are not yet able to construct a logical framework that is consistent
with all the data. Two-hundred-foot offsets in the process of drilling are

6



still common in the Grants Mineral Belt in the search for deposits within
favorable ground. Thus, the interactions among the geologic factors that
control the occurrence of deposits are unknown in any quantitative sense,
and this lack of knowledge precludes any meaningful parametric approach.

Despite these limitations, the probable qualitative interactions among
geologic factors that govern the distribution of uranium deposits can be
stated. In particular, these interactions can be expressed as logical
functions. A set of logical functions translates a particular genetic-geologic
model into a form that can be evaluated for a given set of data. A given logical
function can take on the values true (presence), false (absence), or neither true
nor false (unevaluated).

A defined set of logical functions can be used to evaluate a particular
genetic-geologic model. The combined presence—absence of the selected
attributes of the model are the arguments of the set of functions. To
evaluate the model, one must first establish the relative importance or
the weights to be assigned to the relationships defined by a given logical
framework. The relative importance of the relations considered critical
for the occurrence of uranium depos&ts is based on the statistical correlation
of the logical functions observed in areas where the deposits occur -— the
control areas. The weights are derived from these correlations.

The favorability for a particular genetic-geologic model is expressed in
the form of a weighted linear function that takes on continuous values
ranging from +1, which, for a given set of _data, indicates a perfect match
with the model, to -1, which indicates a perfect mismatch with the model.
Intermediate values between +1 and -1 indicate the degree of match or
mismatch. A value of zero is interpreted as meaning that the information

provided indicates neither a match nor a mismatch.



THE LOGIC OF FAVORABILITY
Nature of inference from attributes

An expression of favorability for uranium can be interpreted as a function
of a set of attributes whose combined presence-absence is associated with
the known occurrences of the type deposit being moéeled. Each attribute
can be considered as a variable which, in its simplest form, is considered to
be present or absent at a given location (in addition, it can be neither
present nor absent and this possibility is considered below). Critical attributes
of a genetic~geologic model are selected (or rejected) on the basis of
their observed presence-absence relationships to deposits in control areas.
To understand the basis for selection, it is easiest to consider the selection
of a single attribute and its relationship to the deposits in an area.

Within a control region, R, the set of locations in which discovered
and undiscovered uranium deposits of a particular type occur can be represented
as a target, T, as shown in figure 2. T/R represents the probability that
a deposit will be discovered by chance. This occurrence (0).probability P
is given by Pr(0) = T/R = P.

We are interested in increasing our knowledge of the occurrence probability
on the basis of the observed presence—absence of selected attributes.
Ideally, we wish to identify an attribute that is always associated only with
uranium deposits of the type sought (fig. 3). 1In this situation, the
attribute A is present if and only if a deposit is present. Its presence,
therefore, is a necessary and sufficient condition. Consequently, information
about the presence or absence of such an attribute, A, results in information
on the presence or absence (occurrence or non—-occurrence) of a uranium deposit.
We express this as a statement of conditional probability in the form

Pr(0/A) =1



Figure 2.--Diagram which shows a set of locations T within region R which
contains uranium deposits.



Figure 3.--Diagram which shows a set of locations within R in which the
presence of attribute A and uranium deposits T coincide.
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Such an attribute is a perfect discriminator and constitutes a perfect
guide to uranium deposits. Although we seek attributes that are perfect
discriminators, we realize that because of the complexity of the geologic
processes and their uncertain relative influences on the actual location
of each individual deposit, such attributes are as rare as the deposit
itself. Thus, in figure 3, we see that

Pr(A/0) = Pr(0/A).
In the Grants Mineral Belt, a candidate for the ideal discriminator of primary
uranium deposits in the Morrison Formation is the presence of the carbonaceous
matter, humate. Unfortunately, humate cannot be detected by indirect methods;
hence, its presence is of limited value for exploration.

Next is the situation in which a deposit occurs if the attribute
is present, as shown in figure 4. Thus, the presence of the attribute is
a sufficient but not a necessary condition. An example of such an attribute
would be a'particular trace element such as molybdenum whose presence was
restricted within a zoned part of an ore body. Such an attribute would
not produce a false-positive in terms of occurrence of an deposit. It
could happen, however, that a deposit occurs without such an attribute
being present so that

Pr(A/0) < Pr(0/A) = 1

Next, a deposit may occur only if a particular attribute is present, for
example, the presence of a favorable host rock (fig. 5). Clearly, not all
rock bodies having favorable host characteristics contain economic depositsz
but without a host, a deposit cannot occur. Such an attribute is, therefore,
a necessary but not a sufficient condition. In this situation,

Pr(0/A) < pr(A/0) = 1.

11



4 .—-Diagram which shows a set of locations T within R in which

Figure
uranium deposits occur if attribute A is present.
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The most typical situation for a given geologic attribute is
that not only is it present for some deposits and absent from others, but
also it is present when in fact no deposit occurs. An example of such an
attribute for sandstone-type uranium deposits is the sandstone-mudstone
ratio within a selected range of ratio values for the host sandstone. Such
an attribute is considered to be a favorable indicator of a uranium deposit
if it is associated more often with the occurrence of a deposit than with a
non—occurrence as shown in figure 6. In this situation,

Pr(0/A) > Pr(0/A)

where U represents the non-occurrence of a deposit.

Clearly, we wish to identify those attributes for which Pr(0/A) is large
relative to Pr(0/A). The latter is the error committed in inferring
from the presence of the attribute, A, that a deposit exists. Similarly,
in the absence of attribute, A, we wish to make Pr(O0/X) large relative
to Pr(0/K). The latter is the error committed in inferring from the
absence of the attribute, A, that a deposit does not exist. Clearly we
would like to select the attribute, A, such that both errors are as small as
possible.

A ternary logic

Our present knowledge of the geology of uranium deposits indicates
that the presence or absence of a single attribute at a location is inadequate
for establishing the presence or absence of a uranium deposit. Some combina-
tion of presence and absence for several attributes, however, should provide a
measure of the likely presence or absence of a deposit. We need to establish
which combinations of attributes are positively or negatively associated

with the occurrences of deposits. In addition, we need to allow for the
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Figure 6.--Diagram which shows a set of locations T within R in which
uranium deposits are more closely associated with the presence
of attribute A than with its absence.
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situation in which presence or absence cannot be determined; hence, we need
to define a "don't know" condition. For the above reasons, we need to establish
rules for ascertaining the state of specified combinations of attributes.
Such rules are based on a ternary logic.

We begin with the assumption that each attribute at a location can be
assigned a state of presence, absence, or unevaluated. We associate the
values +1, -1 or O, respectively, with these three states. If we then combine a
set of attributes according to a specified logical relation for a given
genetic-geologic model, we can define the state of the combiﬁed set of
attributes as presence, absence, or unevaluated and can associate with the
combined attribute set, the values +1, -1, or O.

Thé states of possible logical combinations of attribuées can be expressed
as a table. In a ternary logic system, we can describe the state of any

logical combination of attributes P and q by use of the following table:

P q p or q p and q not p
1 1 1 1 -1
1 0 1 0 -1
1 -1 1 -1 -1
0 1 1 0 0
0 0 0 0 0
0 -1 0 -1 0

-1 1 1 -1 1

-1 0 0 -1 1

-1 -1 -1 -1 1

The functional values of p, q, p or q, p and q, ahd not p are shown under the
appropriate headings for all possible states of p and q. The logical connect-

"or", "and", and "not", constitute the three basic logical operations. Once

ives
these relationships are defined, the functional value of any compound logical

expression involving more than two attributes, a, b, c, for instance, can be

evaluated, as for example, (a or b) and (not c).
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Logic circuit
The interactions among the different geologic attributes associated
with either the occurrence on non-occurrence of uranium deposits are
of most interest. Such interactions can be expressed as the combined
presence—-absence of a chosen set of attributes for a given genetic-geologic
model. In terms of combining attributes, we can specify the following as

the basic elements of any logic circuit:

; ; |
0 > DY —
q q ’
o nt T
f=p+gq f=p.q f=7 l
|

The above equations provide a shorthand expression for each of these relation—
ships. The "+">sign refers to the logical "or" relation, the "." sign refers
to the logical "and" relation, and the "-" sign refers to the logical "not"
relation. It must be remembered that "+" and "." are logical operators
rather than arithmetic operators.

When we combine groups of attributes, we must specify the logical operators.
For example, we can consider the relation f among three attributes A, B, and
C defined by the following expression:

f=(A+B)C

such a relationship is represented by the following logic circuit:

D_f

i

A
B

Ao




Thus, for different presence-absence values of A, B and C (that is, their observed
states of +1, -1, or 0), we obtain a different result for f. For instance,
if attributes A and B represent two related textural properties of a sandstone
body, the presence of either of which is considered favorable for the occurrence
of a uranium deposit, and if attribute C represents a third textural property
independent of A and B, the presence of which is considered unfavorable, f
can be considered a host rock textural factor that takes on the value 1 if
and only if A or B or both are present and C is absent.

In general, attributes A, B, C, D, E, and so forth will compose the ith
stage of a particular genetic—geologic model factor defined by:

fi= g(A, B, C, D, E, ... )

where g represents a function such that the process stage represented by
factor f; takes on the value of +1 if all the conditions implied by the

factor are met.

Favorability function
A favorability function (f) is defined as a weighted linear combination
of factors, fj, each of which contributes information about the presence or
absence of a uranium deposit of a given genetic-geologic model. For a model
involving n factors, we can write
f =ayfy + agfy + ... + apf,.
Each factor, f;i, represents a stage of the model. A factor can be represented
either by a single attribute or by a combination of attributes. In eilther
case, each factor, fj, takes on the values, +1, -1, or 0, depending on the

combined presence—absence-don’t know states of the chosen set of attributes.

-
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For a given set of fj's défined by a particular genetic—geologic model,
which can be evaluated for a set of geographically defined cells within a
selected control area, one can determine the weights, a;'s, that characterize
the model best in a statistical sense. The weights are calculated in such a
way that the measured f for éach cell matches as nearly as possible
the corresponding f;'s for that cell. ‘

I1f we consider f and the fj's as vectors where the components of the
vectors are the individual values of f and f;'s observed in each geographic
cell of a selected control area, a measure of the similarity between f and any
given f; can be expressed as the scalar product f'f; where f' is the transpose
of £ (the transpose means that each column vector becomes a row vector). In
order that the scalar product f'f; be bounded, we divide the product by
f'f and obtain

f'E;/£'¢
as a scaled product. The greater the similarity between f and f;, the more
closely the value of the scaled product approaches 1. For n factors, the
overall measure of similarity is given by

n

T f'f;/F'fF.

i=1
We wish to calculate the set of weights, aj, i=l, ..., n, such that the
above expression is a maximum. This calculation is made by solving the linear
systems of equations given by

F'FA=)\A
where F is the matrix composed of the vectors f;; A is the eigenvector associated

-

with the largest eigenvalue, A , of the matrix F'F.
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Thus, for a given control area, the weights, aj's, reflect the relative
importance of the f;'s &ith respect to the interactions among the f;'s.

The higher the value of aj, the greater is the relative importance of the
corresponding fj.

In order that f be bounded above by the value, +1, and below by the
value, -1, each aj is divided by the sum of the absolute values of the aj's
so that the final form of the equation is given by

f=ay;'f) +ay'fgp+ ... ag'fy 1< £<1
1where

n
aj' = a;/z lajl.
i=1

The value of f can be considered as the measure of the favorability of a region
cell with respect to matching a particular genetic-geologic model. A favorability
of one is interpreted to indicate as meaning that the observed attributes

for the region cell possess all the favorable qualities of the model. Values

less than one are interpreted to indicate that the cell possesses some but not

all the favorable qualities of the model and hence, that the cell has a less
chance of containing a deposit of the type described by the model. The

equation can be used for a set of similar size geographic cells in an unknown

area to generate a spatially continuous measure of favorability, that is, a

map of the relative chance of occurrence of one or more deposits in each of

the cells considered.
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RESOURCE ASSESSMENT
Construction of favorability function

A favorability function unfortunately cannot be constructed directly.
Many steps involved, for instance, are dependent on the present state of
knowledge among geologists, and such a state is not always universally
acknowledged. In constructing a logic circuit, the geologist may often have
several changes of mind about the arrangement of the logic elements. The
construction of logic circuits is a grial and error process, and, conse-
quently, intermediate steps in the process must be evaluated.

The process of formulating a favorability function follows more or less
the steps outlined in figure 7. The data are prepared in the form of a
series of maps, in which each map depicts the spatial distribution of a parti-
cular attribute shown in Step A. In many maps, the attribute will represent
the response (presence, absence, don't know) to a question included as part
of a particular genetic-geologic model question set. Thus, for areas in
which humate related type uranium deposits may occur, the attributes will contain
information\on such factors as precursor conditions, host-rock formation,
source of uranium, or preservation. Such information may be represented by
a particular mudstone/sandstone ratio, alteration, trace-—element concentration,
and so forth. In the event that an observed attribute has not been transformed
into ternary form by prior assignment, such a transformation and subsequently,
the gridding of the data is performed in step B. For most attributes, the data
are gridded so that each region cell in the grid contains at least one control

point, that is, a location at which data have been collected. -
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The transformed data are arranged in the form of a matrix in which the
rows refer to region cells and the columns refer to attributes (step C).
In an area in which the potential uranium resource is to be evaluated, the
matrix may consist of a thousand or more rows (cells) and a hundred or
more columns (attributes). The matrix serves as the input to a computer
program that facilitates the evaluation of the favorability function.
As discussed previously, the geologist usually has formulated prior
judgements concerning the attributes that combine to form factors that
are part of any genetic-geologic model. Moreover, the geologist may even
have determined how the different attributes should be combined into
process stages. In such cases, the logical combinations of attributes
that form the different factors in a genetic-geologic model can be specified
directly (step D). In the event that the geologist may wish to explore
the relationships among the various attributes in a control area, computer-
generated maps can be prepared to depict the spatial distribution of
factors that are logical combinations of selected attributes. If a control
area contains known uranium deposits that can be characterized by a particular
genetic-geologic model, the presence (or assence) of such factors can be.
related to the presence (or absence) of these deposits. Such relationships
assist in the identification and selection of factors that compose a model.
Once the factors in a genetic—geologic model have been specified, the next
step E is to determine the relative contribution or weight of each factor in
the model. The weights can be determined in two ways. One way is for the geologist
to specify the weights directly (step F). For instance, the geologist can specify
that the source-of-uranium factor contributes 20 percent to the overall -

favorability of occurrence of a roll-front type uranium deposit. The other .

weights could be specified in a similar manner. The second way (step G), and
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the way which is preferred, is when the geologist identifies areas in which
statistical comparisons can be made between the occurrence or non-occurrence
of deposits and the presence or absence of geologic factors of the particular
model. Such areas are treated as control areas, and region cells within
these areas are called model cells. Once a control area is selected, the
weights associated with each factor of the model are calculated according to
the method outlined in the previous section. The weights obtained for each
model are used in evaluating the favorability of region cells outside the

control area.

Conversion of favorability to
probability of occurrence

The favorability with respect to a particular genetic-geologic model
for a particular unexplored area does not equal the probability of occurrence
of a deposit. The reason is that the proposed models are not perfect discri-
minators of the factors that control the occurrence of deposits. Even if
a region cell possesses all the attributes of a model the probability of
occurrence of a deposit is not necessarily one. Similarly, if a region
cell possesses none of the attributes of a model, the probability of occurrence
of a deposit is not necessarily zero. Consequently, the favorability does
not equal the pfobability.

In an ideal situation, the conversion of favorability to probability
could be accomplished by analogy by relating the occurrence or non-occurrence
of deposits in areas that have been essentially drilled out to the measures
of favorability determined by the method described in this report. Thus, if
such an area were to be divided into region cells and if the favorability

were to be determined for each cell, one could count the number of cells in which
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one or more deposits occurred for which the favorability fell within a given
range. On this basis, favorability could be converted to probability by
counting the number of cells having nonoverlapping ranges and dividing by the
total number of cells.

Such detailed data from control areas are not always available, and con-
sequently, an alternate approach is proposed. The geologists' best estimates
for the probabilities of occurrence of one or more deposits, given that a
region cell possesses all the attributes of a particular model o; none of
the attributes, can be compared with a subjective estimate of the probability
of occurrence of one or more uranium deposits.

The relationship between favorability and the probability of occurrence

of a particular type of deposit can be expressed as

P - Po

PI_PO P°_<_P<P]_
F=

P-PQ

PO-PT PT<P<PO

where F is the favorability and P-, P,, and P} are probabilities. Pj; is the
probability of occurrence when F = 1 and all the attributes of a model are
present. Py is the probability of occurrence when F = -1, and none of the
attributes of a model are present. P, represents the probability of occurrence
when F = 0, and information about the attributes of a model is missing or
else the combined presence-absence of the attributes yields ambivalent results;
if the combined presence-absence of attributes yields ambivalent results, the
probability is based on nonmodel evidence for the presence of uranium.

The relationship between favorability and probability is shown in figure

8. Even if all the attributes of a model are observed, the probability of

occurrence is estimated at being less than one. Similarly, even if none of the
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Figure 8.--Graph which shows relationship between favorability (F) and
probability of occurrence (P).
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attributes are observed, the probability of occurrence can be estimated as
being greater than zero. Should information on the attributes of a model be
either lacking or contradictory, that is, F = 0, the probability of occurrence
could be non-zero and would be estimated from the available evidence for the
presence of uranium.

Given estimates for Py, Py, and P, and given that the favorability,
F, has been determined within a region cell, the probability of occurrence
of one or more deposits within the cell is given by

P, + F(P1-P,) F>0 °
Py, + F(P,-PT) F<O

As more geologic information becomes available, the estimates for Py, Py,

and P, will change, and therefore the probability of occurrence within

any given region cell should not be regarded as some fixed value.

Undiscovered resource estimates

Once favorability and probability have been determined, the potential
uéanium resources within an area can be estimated. Information on grade and
tonnage of known deposits in control areas is used to estimate undiscovered
resources in partially tested and untested areas. Because the probability
of occurrence is determined at a region-cell level, grade and tonnage of
deposits likewise need to be aggregated at the region-cell level. Thus, for
an appropriately selected set of region cells within a control area, an
average grade and tonnage can be estimated along with the distributions of
the values for grade and tonnage. The averages for grade and tonnage represent
the eﬁdowment of the particular genetic-geologic model identified for the

control area, and the distributions of the values of grade and tonnage
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represent the range of values likely to be encountered outside the control
area in areas judged to be similar,

Once the grade and tonnage of each genetic-geologic model have been
established at the region-cell level, the potential uranium resources of a
given region cell in which the probability of occurrence of one or more
deposits has been evaluated for an appropriate genetic—-geologic model can be
estimated by multiplying the probability of occurrence by the product of ’
the average grade and average tonnage of the model. The potential resources
of a larger area can be determined as the sum of the potential resources
of region cells contained within the larger area.

To provide a measure of the uncertainty in the estimates, the probability
of occurrence can be combined with the distributions of the grade and tonnage
of a genetic—-geologic model by use of methods described recently by Ford

and McLaren (1980). These methods produce a range of potential resource

estimates having varying likelihoods of being correct.
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SUMMARY

Geologic decision analysis has been described in this report as a proposed
method for estimating the potential uranium resources in areas where observed
geologic characteristics can be compared with those in areas where the uranium
resources are known. Although it is still being researched, the method
integrates geologic data within a logical framework of genetic-geologic
models. The general steps involved in the application of geologic decision
analysis consist of constructing a favorability function, converting favorability
to probability of occurrence of a deposit, and combining probability of
occurrence with the expected grade and tonnage of a deposit. Each of the
steps represents an identifiable component of the resource estimation process
and, though each step is an inteéral part, each can be audited independently.
This independence of each step gives a greater sense of credibility to the
final resource estimate. Should geologic decision analysis prove successful
for the test areas currently being evaluated, it will provide a non-subjective,

quantitative approach to resource estimation for the future.

29



REFERENCES CITED

Finch, W.I., Lupe, R.D., Granger, H.C., and McCammon, R.B., 1980,
Research on uranium resource models, A progress report. Part I.
Interactive genetic-geologic models to evaluate favorability
for uranium resources: U.S.Geological Survey Open-File Report 80-2018-A,
Ford, C.E., and MclLaren, R.A., 1980, Methods for obtaining distributions
of uranium occurrence from estimates of geologic features. Union Carbide
Corporation, Computer Sciences Division: Rept. K/CSD-13, 121 p.
Granger, H.C., Finch, W.I., Kirk, A.R., and Thaden, R.E., 1980, Research
on uranium resource models, A progress report. Part III. Genetic-
geologic model for the tabular humate uranium deposits, Grants Mineral
Belt, San Juan Basin, New Mexico: U.S.Geological Survey Open-File Report
80-2018C,
Granger, H.C. and Warren, C.G., 1978, Some speculations on the genetic
geochemistry and hydrology of roll-type uranium deposits, in
Resources of the Wind River Basin: Wyoming Geological Association
Annual Field Conference, 30th, Casper, Wyo., Sept. 1978, Guidebook,

p. 349-361.

30



UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

Research on Uranium Resource Models

A Progress Report

PART III -~ GENETIC-GEOLOGIC MODEL FOR TABULAR HUMATE URANIUM DEPOSITS,

GRANTS MINERAL BELT, SAN JUAN BASIN, NEW MEXICO

By
Harry C. Granger, Warren I. Finch, Allan R. Kirk,

and Robert E. Thaden

Open-File Report

80-2018-C

Work done in cooperation with the U.S. Department of Energy.



Contents

Page
Prefaceeecccccescoscsccsocsosccocssossosososssnsesssssssosssssssssscssssscil
Introductionecscecesccescsccscescecsscsccscocsnssconscosssossnsssossscoscsnsl
AcknowledgmentSeeecesescossossvesssosssssssssssnssssscosssssssssesssossosel
General statement of the model.cccecceccescesssacsssssasssasasassssssasesch
The modeleceeseeecssceceosscccosasscsccsasccconnsnsnssssssnnssnsssssescesld
EP1logUEescecscecceonsccsnscsscssnsasscsssososssscssscscsssnsssssccssssncssld

References..........--...D.-.o.ooo.b..o.oaooooo.otovo0.0...00.0...00000017

Illustrations

Figure 1. Index map of the Grants mineral belt, San Juan Basin

area........................................................2
Plate 1. Provisional logic curcuit for the tabular humate-related
uranium deposit model....O..‘0.0..O.........0000000000000.59
Tables

Table 1. Schematic sequence of stratigraphic units of Late Jurassic
age in the southern part of the San Juan BasSineeessecesceecess5

2. Tabular humate-related uranium deposit model, Grants
mineral belt, New Mvexico....................................22

2A. Explanatory notes to accompany table 2.ceseccccccecsscassasosssll

3. Preliminary list of general questions to apply the tabular
humate—uranium deposit model to a new baSiNeecscessoossssosssdd

4., Data needed to answer questions in table 2...ecceccececcccccsesed2



PREFACE

This report 1is part III of a series of reports 6n the progress of
research on methodology for assessing undiscovered uranium resources, an
effort funded for the most part by the U.S. Department of Energy to develop
alternative assessment methods. The overriding goal of this research is to
reduce subjectivity in the procedure for resource assessment. For more
background on this research the reader is‘referred to the Preface of Part I
(Finch and others, 1980). Part I deals with the philosophy and guidelines for
building an interactive matrix of genetic processes related to uranium
deposition and their corresponding geologic evidences. This matrix 1is called
a genetic—-geologic model. These models are formatted in a chronological
fashion that facilitates a logical framework circuit to utilize data to
evaluate favorability for uranium deposits of the type modeled. The first
genetic—geologic model to be built as a prototype along the guidelines set
forth in Part I 1s the subject of the present report——-Part III. The tabular
humate-related uranium deposits of the San Juan Basin, New Mexico are the best
known of our domestic deposits so that they are ideal to develop and test the
model-building principles.

In order to use the models and accompanying logic circuits to determine
favorability and to integrate this favorability with grade~tonnage data on the
deposits and with prior probability of occurrence of one or more deposits, a
single basic computer—~oriented system was developed~—namely, geologlc-decision
analysis, which is the topic of Part II (McCammon, 1980). The geologic-
decision analysis method will be used on the tabular humate-related uranium
deposit model for further work on uranium-resource models for resource

assessment.
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Critiques of each part of the three open—-file reports (see below) are
solicited and should be mailed to the authors: U.S. Geological Survey, Mail

Stop 916, P.0. Box 25046 Federal Center, Denver, CO 80225.

Part I--Genetic-genetic models-—-a systematic approach to evaluate geologic
favorability for undiscovered uranium resources, by W. I. Finch,
H. C. Granger, Robert Lupe, and R. B. McCammon.

Part II--Geologic decision analysis and its application to genetic-geologic
models, by R. D. McCammon.

Part III-—Genetic-geologic model for tabular humate-rated uranium deposits,
San Juan Basin, New Mexico, by H. C. Granger, W. I. Finch, R. E.

Thaden, and A. R. Kirk.
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Genetic~geologic Model for Tabular Humate Uranium Deposits,

Grants Mineral Belt, San Juan Basin, New Mexico

INTRODUCTION

The tabular humate uranium deposits occur only in the Westwater Canyon
Member and the Poison Canyon and Jackpile sandstones, two economic units, of
the Brushy Basin Member of the Morrison Formation of Late Jurassic age in the
Grants mineral belt in the southern part of the San Juan Basin (fig. 1).
These deposits represent one of the most important subtypes of the so-called
sandstone~type uranium deposits. Within the San Juan Basin, uranium deposits
are also found in the sandstones in other members of the Morrison and in the
Todilto Limestone also of Late Jurassic age. The tabular humate uranium-
deposit model, however, applies specifically to the primary deposits in
sandstones of the Westwater Canyon and Brushy Basin (including the Jackpile
sandstone) Members of the Morrison Formation and only in part to roll-type
deposits or other varieties of uranium deposits in these rocks and in older
and younger formations.

This exercise was initiated on the premise that the greater the
information available about the genesis and geologic setting of a given
deposit or group of deposits, the better should be our ability to estimate
their resource endowment. We have adhered to this fundamental premise
throughout our study. Data that may seem unrelated to ore deposition have
been included in the belief that excluding them at this stage would violate
the premise. The model, therefore, contains data and questions that may
appear to be Immature and superfluous to the task of resource assessment. We
hope that subsequent statistical treatment will help to cull out those data
that are, indeed, unnecessary without relying on the subjective judgment of a

1
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Figure 1.--Index map of the Grants Mineral Belt,
‘San Juan.Basin area.
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geologist. It is expectable, however, that both the computer program and the
geologist would tend to eliminate similar data from consideration when
assessing endowment.
ACKNOWLEDGMENTS

The model described in this report is based on the work of literally
hundreds of people over the past 25 years. We have documented the text and
tabulated material sparingly and only where necessary. In order to prepare
for the model building, several group discussions were held within the U.S.
Geological Survey to review all aspects of the uranium geology of the basin.
We also discussed these things with other individuals. Among those who
contributed were V. P. Byers, R. A. Cadigan, K. A. Dickinson, L. C. Craig, C.
A. Huffman, Jr., M. W. Green, Robert Lupe, Fred Peterson, R. B. 0’Sullivan, C.
T. Pierson, J. L. Ridgley, J. F. Robertson, E. S.- Santos, C. E. Turner-
Peterson, and R. S. Zech, all of the U.S. Geological Survey. The second
Grants Uranium Region Symposium sponsored by the New Mexico Bureau of Mines
and Mineral Resources and the American Association of Petroleum Geologists
held in May 1979, was particularly helpful to add new data and thinking on
~genesis of the uranium deposits. We thank William A. Scott and Robert M.
Turner, U.S. Geological Survey, Reston, for writing the program to print the

logic circuits shown in Plate I.



GENERAL STATEMENT OF THE MODEL.

The type of deposits on which this model is based has not been recognized
as of 1980 elsewhere in the world, yet it has supplied a greater domestic
production and represents more reserves of uranium than any other type of
uranium ore in the United States. The deposits are distinguished from other
uranium deposits principally in that the uranium is concentrated with an
authigenic organic material--an interstitial humate cement, which forms
elongate undulatory layers within the host sandstone units (Granger and
others, 1961). (Humate, as used here, is a variety of kerogen believed to
have formed originally by the precipitation and aging of a water—soluble humic
substance.) The geochemistry and geologic history of the humate is intimately
related to the localization of the uranium.

All these deposits occur within fluvial sandstone units of the Morrison
Formation (table 1). However, they are distributed through a considerable
stratigraphic interval that includes rocks of both the Westwater Canyon and
the Brushy Basin Members. Most of the deposits have been found in a belt
about 30 km wide and 120 km léng roughly parallel to the southern margin of
the San Juan Basin (Kelley, 1963). Recent discoveries, deeper in the basin,
contradict the early concept of a single relatively narrow mineral belt.

The Morrison Formation was deposited in Late Jurassic time as a series of
coalescent fans on a large alluvial plain that constituted the Cordilleran
foreland (Osterwald and Dean, 1961; Finch, 1964). Pre-Morrison history of the
Cordilleran foreland included a period of mixed marine and continental
deposition in the late Paleozoic.and early Mesozoic followed by continental
deposition during the middle Mesozoic. By Morrison time structural uplifts
evidently had created a highland along the southern and western borders of the

foreland.
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Table 1.~-Schematic sequence of stratigraphic units of Late Jurassic
age in the southern part of the San Juan Basin.
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-Granitic basement rocks in many places throughout the cordilleran
foreland have been found to contain zircons that have an unusually high
uranium content (Silver, 1976). This, coupled with both minor uranium
occurrences and ore deposits of uranium in numerous sedimentary units older
than the Morrison, suggests that the Morrison was deposited in an abnormally
uraniferous region from source rocks that were also abnormally high in uranium
content.

In the‘Colorado Plateau region, which includes the San Juan Basin, the
Morrison Formation has been separated into four members. The basal Salt Wash
and Recapture Members were essentially synchronous and were succeeded by the
Westwater Canyon and the Brushy Basin Members, although only the Brushy Basin
was deposited throughout the entire region (Craig and others, 1955).

The Salt Wash Member (not shown on table 1) is a fan-shaped wedge of
fluvial sediments- deposited in the northern and western parts of a shallow
depression that we will call the ancestral San Juan Basin. The epiclastic
detritus was largely quartzose sand derived from older sedimentary rocks to
the west and southwest. Various proportions of intercalated mudstones within
the Salt Wash have been interpreted as overbank and floodplain deposits.
These deposits were at least partly derived from argillized volcanic ash.

The Recapture Member was deposited in a shallow depression as it was
forming between the Salt Wash fan and the south edge of the ancestral San Juan
Basin (Craig and others, 1955). It is made up mostly of a sequence of fine
sandstones, siltstones, and mudstones, probably deposited in a fluvial and
eolian—dune—sabkha environment.

In the southern part of the San Juan Basin, M. W. Green (1975; in press)
has described a widespread disconformity separating two dominantly aeolian-

sabkha—evaporitic sequences that include the Recapture Member and the Cow



Springs, Summerville, Todilto, and Entrada Formations from an overlying
sequence of dominantly fluvial and lacustrine deposits that include the
Westwater Canyon and Brushy Basin Members. This disconformity separates the
traditional Recapture from the Westwater Canyon for the most part but, in
places, it occurs well down in the traditional Recapture where Recapture beds
are stratigraphically equivalent to Westwater Canyon beds. All the tabular
"humate uranium deposits occur above this disconformity and, for the purposes
"of the model, we have arbitrarily assigned all presently known uraniferous
humate deposits to the Westwater Canyon and Brushy Basin Members (including
the Jackpile sandstone) of the Morrison.

The Westwater Canyon Member was depositgd principally by braided streams
as a wedge-shaped fan (or multiple fan) controlled by approximately the same
boundaries as the Recapture. Isopachs of the Westwater Canyon (Craig and
others, 1955) suggest that its source area was to the southeast of the Salt
Wash source rocks, possibly in the region of the Mazatzal and Pinal Mountains
of Central Arizona. A granitic provenance is suggested by the epiclastic
arkosic components. The Westwater Canyon also contains many mudstone or
claystone splits and lenses compositionally similar to the overlying Brushy
Basin Member. In the Ambrosia Lake uranium mining district near the outcrop,
a tongue of Westwater Canyon—-type sandstone, called the Poison Canyon
sandstone (Santos, 1970), projects into the mudstone facies a few meters above
the base of the Brushy Basin.

Sediment transport directions in the Westwater Canyon Canyon Member,
which are inferred to be northerly (from descriptions by Craig and others
(1955) in the northwest parf of the fan), tend to change to east-southeast
directions in the central and eastern parts of the unit (Saucier, 1979). Near

the top of the Westwater Canyon in the Ambrosia Lake district and in the



overlying Poison Canyon sandstone, however, transport data suggest that the
stream directions were turning more to the northeast (Granger and others,
1961). Reconstruction of depositional conditions suggests that the northward
extent of the Westwater Canyon was limited by prior deposition of the Salt
Wash Member, which forced streams to flow more easterly in mid-Westwater
Canyon time but ultimately to resume their northeastward trend as the Salt
Wash sediments were inundated.

Recently acquired data that indicate consistent northeast depositional
directions in the lower part of the Westwater Canyon, and consistent southeast
depositional directions in the upper part of the Westwater Canyon, (Christine
Turner—Peterson, oral commun., 1979) may require a revised interpretatiqn of
Westwater Canyon history and provenance.

The Brushy Basin Member overlies either the Westwater Canyon Canyon or
the Salt Wash Member throughout the region of the ancestral San Juan Basin,
and merges with undifferentiated Morrison farther to the north and northeast
(Craig and others, 1955). The Brushy Basin consists dominantly of montmoril-
lonitic or zeolitic mudstone and claystone, but also encloses many lenticular
sandstone bodies, most of which are compositionally similar to the Westwater
Canyon. The largest of these is called the Jackpile sandstone (Moench and
Schlee, 1967). It is a northerly trending channel sandstone system that was
deposited contemporaneously with upper Brushy Basin and whose provenance area
may have been even farther southeast than that of the Westwater Canyon.

Rb-Sr dating of "barren—ground" montmorillonite in the Westwater Canyon
suggests deposition at least 139 * 12 m.y. ago (Lee and Brookins, 1980).

The facies relationship between the Brushy Basin and the underlying
Westwater Canyon.is not considered clear by all workers but may be attributed

simply to lacustrine or distal facies deposition by the broad fan systems or



possibly to choking of the depositing streams by greatly increased
contributions of tuffaceous material. The source of the montmorillonitic or
zeolitic components originally deposited as tuffs is conjectural, but
prevailing Late Jurassic wind directions (Poole, 1962) and known Jurassic
volcanism suggest sources to the west and northwest.

Fosslil wood in the form of logs, limbs, and smaller debris is a common,
though generally not abundant, constituent of the Westwater Canyon Canyon and
Brushy Basin sandstones. Much of it was preserved by coalification soon after
burial. Sandstone in broad zones where coalified wood is present were
diagenetically bleached even well away from the fossil wood, and pyrite was
deposited sparsely throughout by the action of sulfate-reducing bacteria.

This leaching may also have been augmented by contemporaneous or later
organic-acid-bearing solutions of either intrinsic or extrinsic origin. Where
coalified wood ie absent, the Westwater Canyon commonly became a hematitic red
through diagenetic oxidation.

The greenish—gray color of the Brushy Basin and of mudstone lenses in the
Westwater Canyon in the Southern San Juan Basin suggests a reduced state for
any iron that is not contained structurally within the clays. There is little
evidence for included organic matter in most of the mudstones, but molds and
imprints of leaves and rushes have been found locally. Along the southern
margin of the basin, nearly all the mudstone is montmorillonitic, but zeolitic
facies have been found along the east margin (Santos, 1975).

The timing of geologic events in the southern San Juan Basin from the end
of the Upper Jurassic Morrison deposition until Cretaceous Dakota deposition
is poorly documented. Subsequent to deposition of the Morrison, the alluvial
plain in the Zuni Mountains region was uplifted and the Morrison and

underlying rocks were truncated at low angles. Humid, swampy conditioms



prevailed, and the exposed Morrison and older units were kaolinized and
bleached by downward-percolating humic acid-rich meteoric waters (Granger,
1962, 1968). Nearly all the Westwater Canyon along the southern margin of the
basin was bleached, but not necessarily kaolinized, probably through the
combined reducing effects of the included coalifying plant material and the
downward—-percolating humic acids. Either later than or contemporaneous with
these swampy conditions, the Dakota Sandstone was deposited along the
migrating strandline of a Cretaceous sea that encroached from the north and
east (Landis, and others, 1973). Rb-Sr dates of authigenic montmorillonite in
the Dakota yield ages of 92 + 6 m.y. (Brookins, 1979).

At about this time, or earlier, a humic authigenic cement was deposited
as extensive undulatory layers in the Westwater Canyon, at least along the
southern margin of the Basin. This humic material, or humate, may have been
derived from the swampy terrane that was a forerunner of, or the base of, the
Dakota Sandstone (Granger and others, 1961). Alternatively, it could have had
an intrinsic source related to ground—water underflow of the rivers that
deposited the Westwater Canyon, to the coalifying and petrifying fossil wood
debris incorporated in the Westwater Canyon, or to organic-rich lacustrine

deposits associated with distal parts of the alluvial plain.
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In general, the layers are subparallel to stratification and are elongate
parallel to sedimentary trends in the sandstone units that enclose them.

The shapes of these humate layers suggest that they may have been
deposited at the interfaces between chemically different solutions. Humic
acids are soluble in neutral to alkaline solutions but are easily precipitated
by acid conditions or by the addition of divalent and trivalent cations.

Granger (1968) proposed that the humic precipitate had been localized at
the interface between a supergene fresh-water solution containing dissolved
humic acids and a more stagnant brine-like ground water solution. The mineral
belt was believed to be defined by the intersection of this nearly horizontal
solution interface with the upper and lower surfaces of the gently dipping
Westwater Canyon and Jackpile units.

Squyres (1969) proposed that the humic matter was ﬁerived from plant
matter deposited within the host rocks. After flocculation by dissolved
cations, masses of gel—-like humate were molded by the moving ground water into
streamlined forms elongate in the directions of greatest permeability.

Peterson and Turner—Peterson (1979) are authors of the "lacustrine humate
model" in which they proposed that the humate was derived from finely
comminuted organic matter deposited with the mudstone unit, which they
attributed to lacustrine environments. They proposed that the dissolved humic
acids were expelled from the mudstones by compaction, and were precipitated in
layers, by waters of contrasting composition that permeated the host
sandstones.

None of the suggestions regarding source and localization of the humate
bodies seems to have met with universal acceptance by geologists working in
the mineral belt, and disposition of this problem awaits further study.

The primary uranium deposits seem to be controlled by the positions of

11



the humate bodies (Granger, 1§68). Existing evidence indicates that the
primary uranium deposits are completely coextensive with the humate. There
are no reliable data as yet, however, to indicate if uranium was introduced
concurrently with the humate, or later. Submicroscopic coffinite disseminated
in the humate indicates that the uranium was deposited partly by reduction,
although reported urano-organic associations suggest that such processes as
adsorption and chelation may have been equally important. Coalified fossil
wood enclosed by the humate is highly enriched in‘uranium, but similar wood
outside the humate layers commonly is almost barren. Chemically reduced
mineral forms of Mo, Se, and V in anomalously large amounts in the ores,
guggest that they were introduced with the uranium.

The ages of the primary ores, based on Rb-Sr dates on associated
chlorite-rich clay minerals, is 139 + 13 m.y. for Westwater Canyon ores (Lee
and Brookins, 1980). Ore in the Jackpile sandstone is reported to have been
redistributed about 113 * 7 m.y. ago (Lee and Brookins, 1980). Pb-U ages of
the ores are discordant and inconsistent, but the seemingly most reliable of
these suggest ages of about 94 + 3 m.y. (Berglof, 1970) for the Jackpile ores
and 112 m.y. (K. Ludwig, written commun., 1977) or older for the Westwater
Canyon ores.

During Late Cretaceous time the region accumulated several thousand feet
of marine and continental sediments. The uranium deposits presumably were
little affected by this burial during which groundwater probably was nearly
stagnant and temperatures probably did not much exceed IOOOC; however, actual
temperatures are unknown.

After post—Cretaceous (Laramide) deformation of the foreland region,
during which the Colorado Plateau ‘was: epeirogenically uplifted and faulted-and

the present San Juan Basin was formed, the host rocks once again were exposed
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along the southern edge of the Basin, this time by Tertiary erosion. Exposure
of the host rocks in. some places permitted oxygen-rich ground waters to
percolate down-dip, guided locally by faults, and to attack the primary ores
below the static water table. In a manner similar to creation of roll-type
uranium deposits, this process resulted in what are variously called post-
fault, redistributed, or stacked ores, which are localized near the edges of
tongue-shaped lobes of oxidized sandstone in the host rocks. These oxidized
rocks have been extensively exposed by erosion along the outcrop of the
Westwater Canyon in many places (Granger and others, 1961). Although both are
typically red, the oxidized tongues associated with the post—primary-ore can
be distinguished from a pre—ore diagenetic oxidized facies (Squyres, 1969).
Diagenetic red sandstone contains partly hematitized ilmenite-magnetite grains
but no evidence of an intermediate pyritic alteration; hematite in the post-—
primary-ore oxidized tongues commonly displays textures indicating the former
presence of pyrite (Reynolds and Goldhaber, 1978).

An alternative chronology for the red oxidized tongues recently has been
proposed (R. J. Peterson, 1979; Smith and Peterson, 1979). By this hypothesis
the humate layers were deposited at about the same time as the host rocks.
Following Late Jurassic or Early Cretaceous truncation of the edge of the
Westwater Canyon, oxygenated ground waters entered the rocks and produced an
altered tongue that redistributed many of the humate layers in its path.
Primary uranium deposition in the humate is believed to have taken place about
139 + 13 million years ago (Lee and Brookins, 1980) but not clear is whether
this ore mineralization preceded or followed the inferred humate
redistribution process.- Although the altered tongue originally contained iron
oxyhydroxides, an aging process under the conditions of Late .Cretaceocus-and’

early Tertiary burial helped to convert them to -hematite. After the rocks.
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were once again exposed by upper Tertiary erosion, oxidation of ore minerals
and pyrite was resumed along the edges of the tongues to create a border zone
of limonitic rock (Saucier, 19791), which extends beyond the original oxidized
tongue, and during which time uranium was redistributed into so-called
"stacked" ore bodies. Although the general picture of early humate-rich ore
being redistributed by one or more surges of oxygen-rich ground water seems to
be firmly established, the elucidation of timing and details of these events
is still being considered.

The orebodies are preserved today principally by their positions beneath
a protective cover of overlying rocks and below the ground-water table. Much
partly weathered ore, however, persists relatively near the outcrop and above
the water table because of the resistance of the humate-rich ore to
oxidation. Recently weathered favorable rock is buff and commonly contains
goethite pseudomorphs after pyrite.

THE MODEL

The tabular humate uranium—deposit model is presented in the format of a
matrix that follows an outline form and, in essence, is comprised of a
tabulation of genetic concepts and their supporting geologic evidences, the
geologic base (table 2). The combination of the two columns is the genetic-
geologic model. The philosophy and guidelines for building a genetic-geologic
model are given in Part I of Reseach on Uranium Resource Models (Finch and
others, 1980).

In order to apply the model to a given area, a set of questions is

presented that corresponds to the various elements in the model; these

lNote;thatwalthough,Sapcier (1979) proposes ‘two states of oxidation, he
believed they were both of Tertiary age. .
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questions are in the third column, Application questions, table 2. The
questions are asked such as they may be answered yes (+l1), no (-1), or don’t
know (0). Each question can be worded differently to suit specific purposes
of application. In order to check out the model in the control area--Grants
mineral belt——and to calibrate and statistically weigh each question, the
questions need to be asked specifically as in the third column in table 2.
This checking, calibration, and weighing is, in essence, the next step in the
evolution of the model~building process, and it may result in the rewording of
some questions. The resulting question set will be used to evaluate the
favorability of the unexplored part of the San Juan Basin.

Some questions involve measurements, such as degree of dip, thickne;s,
lithologic ratios, and rock properties, and these questions in table 2 contain
variables of unknown quantity or range such as X or X and Y. In order to
determine the critical values of the variables, a subquestion follows in
parenthesis these types of questions. A subroutine wiil be carried out in the
control area to statistically determine the critical values, which will then
be substituted for the unknowns.

The questions can be worded in general terms so that the model can be
applied to another basin, such as the Raton Basin in eastern New Mexico where
Morrison rocks are known, or to a basin that contains rocks of similar or even
dissimilar age elsewhere. A preliminary general set of questions
corresponding to specific ones in table 2 is given in table 3. Further
research may change some of these questions, but for the most part we believe
that this list of general questions will be useful. We must emphasize that
the model presented here is preliminary and experimental, and that any model
is subject to change with mew data-and mew concepts. :Gemetic-geologic models-

are dynamic.
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Data are required to answer the questions posed in table 2. - To aid in
answering the questions, a list of the data required for each question is
presented in table 4. This list could be consolidated by grouping the same
and similar data into categories. This would aid in compiling and using the
data in applying the model in both the control and unexplored areas.

In order to apply the question set using geologic-decision analysis as
presented in Part II of Research on uranium resource models (McCammon, 1980),
a preliminary logic circuit is presented in Plate I. This computer-generated
circuit is tentative as, like the question set, it will be checked out further
in the control area--Grants mineral belt. In fact, the circuit will be the
routine that will aid in calibrating and weighing the questions as to presence
or absence of uranium ore. This routine is in essence a discriminatory
function as explained further in Part II. An improved and more complete logic

circuit will be developed from the preliminary one presented here,

EPILOGUE

Although the uranium deposits in the Morrison and associated formation in
the San Juan Basin have probably received more study than any other deposits,
they are still not perfectly understood. As a witness to this, the U.S.
Geological Survey in 1979 began a major geologic-geochemical-geophysical study
of the San Juan Basin framework, which will involve more than 30 scientists.
Much of this work will generate data to answer some of the questions in table
2 for which there are now insufficient data. Other work will center around
gaining a better understanding of the structural evolution of the basin, the
sedimentation history of the host rocks, the sources of uranium, the timing of
various ore-forming processes, the geochemistry of primary, redistributed, and
weathered ores, -and finally a-total synthesis of the "complete -geology of the

basinal area and its surreundings.
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The building of this model has pointed to some aspects that need
particular attention. They included the following: Establish sources of both
uranium and humate, establish the relative times of uranium and humate
deposition, establish permissive geochemical processes for uranium and humate
deposition; and determine if sediment geometry or composition was more
important in localization of uranium than basin hydrology and kinetics. If
the ratio of uranium to carbon is nearly constant, determination of
favorability for organic carbon (humate) may aid greatly in uranium

favorability, and eventually in estimation of uranium endowment.
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A2.

Bl.

B3.

B8.

C.

Dl.

D7. and

Dlla.

El. and

Table 2A.--Explanatory notes to accompany table 2

(Computer access—-WHY)

The Morrison and pre~-Morrison sedimentation took place prior to
periods of major disruptive epeirogenic deformation, such as the
Colorado Plateau, Front Range, Nacimiento, and other uplifts in the
foreland region.

This conclusion is according to the conventional interpretation of a
broad alluvial fan emanating from the southwest (Craig and others,
1955). More recent studies (C. E. Turner-Peterson, oral commun.,
1979) may dictate modification of this depositional interpretation.

Biotite, hornblende, ilmenite, magnetite, and other mafic minerals,
derived from granitic and metamorphic provenance terrane, were
probably sparingly present in the freshly derived rock. Relict grains
and alteration products of some of these minerals may be seen in thin
section and in heavy-mineral suites.

The coherency of the mudstone galls suggests that they were not
volcanic ash when the banks were undercut. Presumably the ash had
been altered to smectite and mixed with epiclastic components prior to
transportation(?) and deposition as overbank deposits.

Only inferential evidence of transport components of host rock can now
be observed in the rocks. The evidence lies in characteristics of the
deposited rocks (which are enumerated in the table 2). Therefore, no
questions are asked for this part of the model.

Rb-Sr dates on diagenetic(?) clay minerals suggest host rock
deposition occurred 139 *+ 12 m.y. ago (Lee and Brookins, 1980).

8. Organic matter that remained unwaterlogged probably was not
deposited. Large waterlogged pieces probably acted like conglomeratic
lag and was deposited in channels with bedload and remained well below
the water surface. Fine-grained waterlogged material was probably
deposited at the tops of bars and with flood-stage overbank deposits
where it was at least periodically above the water table. Organic
material that remained under the water table probably tended to
coalify, whereas that exposed to the atmosphere probably tended to
oxidize and either to disappear or to become silicified. :

Prior to compaction and cementation by quartz overgrowths, clay
minerals, and calcite, the permeability must have been even greater.

E.2. Zones that contained-large 'amounts of -decaying andcoalifying
plant matter and whose pores were filled 'with humic acid-bearing

ground waters were protected from:oxidation. Indigenous, sulfate— -

‘ﬁreducing.bacteriarproduced'eaough*ﬁzsftoﬂaltex many of the iron-
- hearing.minerals. Zones.that were.not protected by organics and

. bacterial products suchas/H3Suand CH

3 became .oxidized.
40



Ez.

E3.

E4.

E6.

E7.

E8'

E9.

Table 2A.--Explanatory notes to accompany table 2--continued

Favorable rocks where exposed at the surface are generally pale to
dark buff because of iron oxyhydroxides formed from weathered pyrite,
and organic matter 1s largely destroyed, except for the largest
fragments.

Presumably, all glass shards and most other fragments of volcanic
materials are largely altered to clays. During alteration the pore
solutions are assumed to have been saturated or supersaturated with
respect to clay minerals (lithophile metal ions; silica; and alumina)
and that some of these precipitated as clays on sand grain surfaces.
This seems to have been a pre—ore process.

Low—-angle pre-Dakota erosion of the Westwater Canyon (and older rocks)
updip from or directly over the deposits exposed a large area that was
probably overlain by swampy, paludal terrane as evidenced locally by
coal at the base of the Dakota. Humic acids infiltrating from this
source could have provided an adequate source of humate.

Quartz overgrowths are generally absent beneath coatings of humate
ore, suggesting that most quartz overgrowth deposition followed humate
deposition. Quartz overgrowths, however, are common in jordisite-rich
zones. Here, the jordisite commonly forms both a thin layer between
the detrital quartz grain and the overgrowth and coatings on the
overgrowth.

Calcite cement is largely later than humate cement, although one
variety in so-called "mottled ore" may be pre-humate.

Kaolinite '"nests" are generally smaller and less abundant in the
humate—-rich ore than in surrounding rocks. The kaolinite appears to
be later than the humate. If this kaolinite is genetically and
temporally related to kaolinized zones (E4 and E5) below the basal
Dakota erosion surface, it provides strong evidence that the humates
were introduced prior to basal Dakota time.

Geologic base

These layers of humate are now uraniferous and coextensive with

primary ore. It is a moot point whether the uranium was deposited
simultaneously with the humate, or later. There seems to be no reason
to believe that uranium was deposited before the humate. The-source

of the humate is also a moot point. Precipitation of the humate could
have been caused when solutions containing organic acids came into -
contact with a solution of either lower pH, or- higher divalent and '
trivalent metal or «complex ion concentration, or both. :

41



E9.

E9.

Fl.

Fz.

F3.

F3c.

Table 2A.--Explanatory notes to accompany table 2-—continued

Conceptual genetic model

Decaying plant material, as it converts to soil humus, peat, lignite,
and coal, partly degrades to organic acids (humic and fulvic acids).
These organic acids are commonly soluble in natural waters but can
also be precipitated under certain conditions (see E.9, Geologic base,
above).

Application question

Care must be taken to distinguish organic humate matter from
molybdenum, vanadium, and manganese minerals of similar color. If
there is doubt a chemical analysis is required.

Uranium could have had either an extrinsic or intrinsic source, and
several alternative possibilities exist between each of the listed
choices, including multiple sources. The age, temperature of
deposition, and probable hydrologic system for ore—-solution transport
do not point to a magmatic hydrothermal source. Rb-Sr ages of 139 %
13 m.y. (Lee and Brookins, 1980), and Pb-U ages of about 110-115 m.y.
(K. R. Ludwig, oral commun., 1979), and ore fragments in conglomerate
at base of the Dakota Sandstone (Nash and Kerr, 1966) in the Jackpile
area suggest a pre-Dakota age for ore; therefore, a source in or near
Morrison time.

Three 1430 + 30 m.y.-old granites that crop out south of the Colorado
Plateau in Arizona, '"when corrected for assumed uranium loss, are
anomalously high in uranium *** compared to the average granite"
(Ludwig and Silver, 1977). The Lawler Peak Granite once contained
24.2 ppm U; the Ruin Granite; 9.1 ppm U; and the granite at Payson;
4.77 ppm U.

Perhaps 70 percent of the uranium in granites is contained in the
minerals biotite and epidote (J. S. Stuckless, oral commun., 1979).

Mudstone clasts derived from undercut stream banks line the bottoms of
some cut-and-fill structures in the Westwater Canyon. This attests to
the cohesiveness of the clasts and suggests that they were clay-rich
mud, not volcanic ash, when deposited (B7, table 2). Perhaps,
therefore, volcanic ash in the provenance areas of the streams was
being devitrified and leached of its uranium during Westwater Canyon
deposition. Air-fall ashes devitrifying in place might release
considerable uranium to ambient solutions, particularly under
oxidizing conditionmns.

If it can be assumed that .volcanic ash should have a:fairly nrormal Th-
U ratio of about 2 to 5 .and, if it is assumed. that uranium might be
lost during alteration:of the.ash to clay minerals, then-the Th-U -
ratio of the residual claysishould increase. This is: .because :the

‘salteration would pprobably.inciude :oxidation; uranium oxidizes readily
- wand becomes -mobile :in .aqueous. golutions . whereas /thorium does not.

- 42
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F3d.

G8.

G9.

Hz.

H3d.

H7.

13.

Table 2A.—-Explanatory notes to accompany table 2--continued

Numerous uranium-molybdenum deposits, principally occurring in
resurgent volcanic caldera complexes have been described in the Soviet
literature. A uranium— and molybdenum-rich volcanic caldera and lake-
bed complex at McDermitt, Nev. may be of similar type. Selenium
anomalies are common in fine-grained sediments derived from volcanic
ash. Therefore, the U-Mo-Se assemblage is compatible with a source
from volcanic rocks.

Some of these collapse structures or sandstone pipes are cemented by
calcite indicating that carbonate-bearing solutions did traverse the
pipes but there is little or no evidence that they provided a conduit
for solutions that formed the ore.

Faults and fractures in the Westwater Canyon have typically enhanced
permeability parallel to the faults, but fracture coatings and
fillings have generally reduced permeability normal to the faults.
Isolated calcite-coated fractures in the Brushy Basin mudstones also
indicate locally enhanced permeability parallel to fractures.
Fractures, almost without exception, displace the primary ore layers,
and ore values are virtually unaffected except where altered by later
events. '

Jackpile ore: Rb-Sr ages = 113 + 7 m.y (Lee and Brookins, 1980;
reportedly remobilizedﬁ Brookins, 1979).

207p5-2355 = 9443 m.y. (Berglof, 1970).
Westwater Canyon ore: Rb-Sr ages = 139 %+ 13 m.y. (Lee and Brookins,

1980).
Total Pb~U > 100 m.y. (Granger, 1963).

A weight ratio of 1:1 for C:U gives a mole ratio of about 20:1, which
suggests that groups of about 20 C atoms in the humate molecule
possess adequate functional groups or have some other capacity to fix
one U atom.

Rb-Sr radiometric age determinations on the chlorite-rich clay
minerals associated with ore yields dates of about 139 * 13 m.y. (Lee
and Brookins, 1980).

The red hematitic oxidized tongues are belived by Peterson (1979) and
Smith and Peterson (1979) to have been formed during the erosion
interval preceeding Dakota deposition. These same oxidized tongues
are believed by Saucier (1979) to have been formed in late Tertiary
time.
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Table 3.--Preliminary list of general questions to apply the tabular humate

uranium—deposit model to a new basin

[The questions are keyed alphanumerically to the model in table 2]

A.

Pre-host rock conditions and events

la.
1b.
lc.
1d.

2a.

2bl.

2b2 L

2c.

3al.

3a2.

3b1 L]

3b2.

Do regional basement rocks contain abnormally uraniferous zircon?
Are crystalline basement rocks abnormally uraniferous?

Do associated strata contain uranium deposits?

Do Pb-isotope analyses of the nearby basement rocks show loss of U?
Are both marine and continental strata represented in sequence
beneath the potential host rock? (This question may not be relevant
in other basins.)

Is the potential host rock part of a red-bed sequence?

Is there evidence of a primary (early diagnetic) red facies of the
potential host unit?

Is the regional angular discordance between the host rock and the
immediately underlying sequences less than 2°?

Does the distribution of the potential host rock essentially coincide
with a present-day basin?

Is the potential host rock near the source—edge of the basin?

Is there evidence of uplift of areas marginal to the potential host
rock’s depositional basin?

Are the sedimentary structures in the potential host sandstone
compatible with a positive area adjacent to the foreland?

Source of host rock constituents

la.

1b.

3a.

Do isopachs of potential host rock unit suggest a sediment source in
extensively uplifted basin margins?

Do paleostream directions suggest a sediment source in extensively
uplifted basin margins? ’

Do granite terranes lie in the general directions indicated by la and
1b?

Is the potential host sandstone feldspathic or arkosic?

A



Table 3.--Preliminary list of general questions to apply the tabular humate

uranium—-deposit model to a new basin--continued

B. Source of host rock constituents——continued

3b.

9a.

9b.

9c.

9d.

10.

11.

12.

Are altered amphiboles and (or) magnetite present in the potential
host rock?

Are granitic pebbles present but rare in the potential host rock?
Are chert grains and pebbles present but sparse?
Are volcanic clasts present?

Are intercalated mudstones in potential host sandstones largely
bentonitic clay?

Are mudstone galls present in channel sandstone units?
Was there contemporaneous volcanism in adjacent regions?

Is there evidence of contemporaneous wind directions from the
volcanic terrane?

Are pyroclastic components of the potential host rock compositionally
similar to the contemporaneous volcanic rocks in adjacent regions?

Are pyroclastic components of the potential host rock of intermediate
to acid composition?

Are there bentonitic beds in the unit directly over the potential
host rocks?

‘Are larger fossil-plant fragments largely devoid of roots and

branches?

Are sparse nonwoody fossil plant molds and imprints in mudstone
facies?

C. Transport of host rock constituents

1-3. No questions (see Appendix A).

4-

5a.

5b.

Does the potential host rock thicken and become sandier along folds,
indicating contemporaneous influence of structure on sedimentation?

Is there a prominent disconformity at the base of the potential host
rock?

Are there higher energy sediments above the disconformity than below?

No question (see Appendix A).
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Table 3.--Preliminary list of general questions to apply the tabular humate

uranium-deposit model to a new basin-—continued

D. Deposition of host rock

la.

1b.

6a.

6b.

9.

10.

11.

Is there evidence that the potential host rock was deposited as a
wedge—shaped alluvial complex?

Is there evidence that the potential host rock was deposited by a
distributary alluvial system?

Are the sedimentary structures of the potential host rock those of
braided streams?

Is there evidence for localized thick sandstone bodies in a trunk
channel system within the potential host unit?

Is there high-energy epiclastic material above intraformational scour
surfaces at or above the base of the potential host unit?

Is the bulk of the potential host unit composed of medium— to coarse-
grained sandstone that displays trough, cross-bedded, and horizontal
lamination typical of fluvial rocks?

Are mudstone beds intercalated with potential host sandstone beds but
subordinate to them?

Is there a critical sandstone-mudstone ratio range as well as a
critical number of sandstone-mudstone alterations?

Do thick bentonitic mudstone layers immediately overlie the potential
host sandstone?

Are large pleces of woody fossils partly carbonized?

Are fine grains of detrital fossil-plant material sparse in the

potential host rocks, especially the very fine grained ones?

Is the potential host sandstone interdigitated with distal and
overlying facles?

Are the host sandstones good ground-water aquifers and is there
evidence that they were more permeable than now?

E. Alteration and preparation of host rock

l.

2.

Is the potential host unit characterized by diagenetic red color and
the absences of organic matter and pyrite?

Is the potential host unit characterized by bleaching, disseminated
pyrite, and coalified plant fossils?

Does the potential host rock contain authigenic montmorillonite or
relict glass shards?
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Table 3.—-Preliminary list of general questions to apply the tabular humate

E.

uranium-deposit model to a new basin--continued

Alteration and preparation of host rock——-continued

4.

8.

9a.

9b.

9¢.

9d.

Was the potential host rock slightly tilted, beveled, and covered by
succeeding sedimentary rocks?

Are the rocks immediately below the beveled surface bleached,
leached, and kaolinized?

Are quartz overgrowths present in the potential host sandstone?
Are the potential host rocks calcareous?
Are kaolinite nests common in the potential host sandstone?

Does the potential host sandstone contain authigenic organic material
(humate)?

Does the potential host sandstone contalin abundant coalified or
silicified fossil wood?

Are carbonaceous lacustrine mudstone beds intercalated with or
overlying the potential host sandstone?

Are coal beds found in the formation that truncates the potential
host sandstone?

Source of uranium

la.

1b.

2.

3a.

3b.

3c.

3d.

Do originally uranium-rich granitic rocks occur in the potential-
host-rock provenance region?

Is there geochemical evidence that the granites in the provenance
region were leached of uranium?

Were minerals, such as epidote and biotite, that may have contained
labile uranium highly altered or destroyed in the potential host
rock?

Are there bentonitic beds in the potential host rock?

Are there thick bentonitic beds above the potential host rock?

Do clays or mudstones in and above potential host sandstone have high
Th-U ratios?

Are either Se or Mo anomalously high in clays in the potential host

unit, or associated with anomalous uranium occurrences in the host
unit?
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Table 3.--Preliminary list of general questions to apply the tabular humate

G.

uranium—deposit model to a new basin—--continued

Are the potential host sandstones presently permeable?

Is there evidence that the flow of possible mineralizing solutionms
through potential host sandstones was restricted by confining

Is there evidence, such as diagenetic minerals, that the potential
host sandstone was more permeable in the past?

Is present ground-water recharge updip from surface exposures?

Is the potential host sandstone less than half the distance to the
Are there humate layers peneconcordant with host-rock stratification?
Do mudstone beds overlying or interlayered with potential host

sandstone contain volcanically derived constituents that appear to

Are there sandstone pipes in the potential host unit?

Is there evidence that these pipes were conduits of mineralizing

Do sandstone pipes extend beneath the potential host unit into

Are there faults in the potential host unit that pre-date the next

Transport of uranium and humate
la.
1b.
mudstone layers?
2.
3a.
3b.
center of the basin.
4,
5.
have devitrified in place?
6a.
6b.
solutions?
7.
potential sources of uranium?
8.
overlying unit?
9a. Do any faults contain "primary" humate?
9b.

Are there primary uranium minerals in any faults?

Primary uranium and associated mineral deposition

la.

lb.

lec.

2a.

Are there known uranium deposits that are elongate subparallel to the
strike of the host unit?

Is the potential host unit truncated by younger formations, and are
known deposits subparallel to the truncation line?

Are there potential host sandstones near an edge of the truncation
zone?

Do isotopic ages indicate that uranium was deposited relatively early
in host-rock history?
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Table 3.--Preliminary list of general questions to apply the tabular humate

H.

I.

uranium-deposit model to a new basin—-continued

Primary uranium and associated mineral deposition=--continued

2b.

2c.

3a.

3b.

3c.

3d.

6a

6b.

7.

8a.

8b.

Do clasts of primary ore occur in overlying rocks?

Do essentially all faults displace primary uranium—mineral
concentrations?

Is primary humate in the potential host rock uraniferous?
Is coffinite the chief primary uraniumlmineral?

Is there evidence for a urano—-organic complex?

Is the weight ratio of C:U in unaltered humate about 1?

Do samples of either humate or barren potential host rock contain
anomalous V, Mo, or Se?

Do potential host rocks contain jordisite or anomalous Mo?

Are either pyrite or marcasite present but unevenly distributed in
ore?

Are U-sulfide S ratios erratic in ore?

Do Mg and chlorite abundances correlate inversely with
montmorillonite in ore?

Are kaolinite nests present in barren rock?

‘Do kaolinite nests seem to be later than ore minerals?

Modification of primary uranium ores

1.

2.

3al.

3a2.

3bl.

3b2.

Is there physical evidence that primary ore was formed prior to the
sedimentation of the next succeeding formation?

Are there remanants of trend orebodies as indicated by their parallel
orientation but obvious reduced size and modified shape?

Is there a red hematitic oxidized zone in the potential host
sandstone?

Are there -uranium deposits adjacent to margins of the hematitic
oxidized tongue?

Do the redistributed deposits have a roll-fromt form?

Are the roll-front bodies stacked along faults and fractures?
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Table 3.--Preliminary list of general questions to apply the tabular humate

I.

J.

uranium—deposit model to a new basin--continued

Modification of primary uranium ores—--continued

3cl.

3c2.

3c3.

3c4.

Are the weight ratios of organic C-U far less than 1 and the Mo
content low in the redistributed deposits?

Do the redistributed deposits contain both coffinite and uraninite?
Are FeSZ’ V, and Se enriched in the redistributed deposits?

Are there Se bands at the edges of the redistributed deposits?

- Recent modifications of primary and redistributed deposits

la.

lb.

lc.

1d.

S5a.

sb.

ba.
6b.
6c.
6c.
be.

6f.

Are surface exposures or shallow drill samples of the potential host
rock pale-buff sandstone that contains hydrous iron oxides or gypsum?

Are there secondary uranyl minerals in the zone of weathering?

Do either surface exposures or shallow drill-hole samples of the
potential host rock contain relict humate, either uraniferous or non-
uraniferous?

Is the average grade of uranium samples low compared to normal
unoxidized ore?

Are surface exposures of the potential host rock abnormally
uraniferous?

Do either ground water in or surface water downslope from the outcrop
of the potential host sandstone contain uranium anomalies?

226

Do surface or ground waters contain Ra anomalies?

Do either Bagite or Mn oxide in the potential host rock contain
anomalous Ra?

Are there positive 226Ra anomalies and higher radioactivity at the
contact between mudstone and sandstone layers within the potential
host unit?

Do soill gases contain Rn anomalies?

Do soil gases contain 4He anomalies?

Does ground water contain Rn anomalies?

Does ground water contain 4He anomalies?

234

Does ground water contain U anomalies?

Do surface waters contain 23Z'U anomalies?
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Table 3.-—Preliminary list of general questions to apply the tabular humate
uranium—deposit model to a new basin-—continued

K. Preservation of uranium deposits

1. Were the potential host rocks deeply buried soon after deposition?

2. Are the potential host sandstone beds directly overlain by thick
impermeable rock units?

3. Is the potential host sandsstone below the present ground-water
table?

4, Is the dip of the potential host beds less than 5°?

5a. 1Is the potential host rock more than several kilometers from a major
fault?

5b. Is the potential host rock cut by faults essentially parallel to the
regional dip?

5c. Is the potential host rock cut by faults transverse to the regional
dip?
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Table 4.--Data needed to answer questions in table 2

Ala.
Alb.
Alc.
Ald.
A2a.
A2bl.
A2b2.

A2c.

A3al.
A3a2.
A3bl.

A3b2.

Bla.
Blb.
B2.
B3a.
B3b.
B4.
B5.
B6.
B7.
B8.

B9a.

Uranium analyses of zircons from basement rocks.

Uranium analyses of basement rocks.

Knowledge or location of uranium deposits in associated strata.
Pb-isotope analyses of nearby basement rocks.

Presence or absence of marine and continental sequence below host.
Presence or absence of red-bed sequence in host unit.

Knowledge of primary red-bed facles in host unit.

Angular discordance between host rock and sequence of underlying
rocks.

Evidence for subsidence during host-rock sedimentation.
Distance from southern edge of host rock basin.

Evidence of uplift of nearest margin of basin.

Direction of resultant current directions of host unit (cross—beds,
lineation trends, channel trends, etc.).

Isopach map of Westwater Canyon Member.

Stream directions (isopach map, outcrop readings).

Geologic map of adjoining region to south.

Feldspar content of host rock.

Altered amphibole and magnetite content of host rock.
Granite-pebble content of host unit.

Chert-pebble content of host unit.

Volcanic clasts in host unit.

Smectite (bentonitic)&claymconteutwa:intercalatednuudstoae.

Mudstone-gallcontent :of -host:sandstone.

.-Paleogeographic map -of ;adjacent region.
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Table 4.--Data needed to answer questions in table 2--continued

B9b.

B9c.

B9d.
B10O.
Bll.

B12.

C4.

C5a.
C5b.

Wind directions in associated eolian sandstone.

Composition of Upper Jurassic volcanic rocks in adjacent region and
composition of Morrison host volcanic debris.

Composition of Morrison volcanic debris.

Presence of nearly pure smectite (bentonite) in Brushy Basin.

Large fossil-plant content of host sandstone.

Fossil-plant mold, imprint, and leaf content of mudstone interbedded
with host sandstone.

Isopach map of host rock (Jmw (Westwater Canyon), Jmb (Brushy Basin),
Jmbjs (Jackpile).

Prominent disconformity at base of Westwater Canyon.
Grain size of basal host unit beds.

Dlal. Isopach map of host rock (Jmww (Westwater Canyon), Jmbb (Brushy

Basin), Jmbbj, Brushy Basin).

Dla2. Grain size of host rock.

.D1b.
D2a.
D2b.
D2c.
D3.
D4a.
D4b.
Déc.
D5a.
D5b.
Dba.

D6b.

Paleocurrent direction in host rock.

Bedding character of host sandstone.

Graded bedding presence or absence.

Isopach map of sandstone within host unit.

Isopach map of sandstone within host unit (net sandstone?).
Conglomerate presence or absence.

Mudstone gall presence or absence.

Scour surface presence or absence. CTe

Average grain size of. host.sandstone.
Sedimentary structures of hest ‘sandstone.
_~Abundance. of.. intercalated amdstone.

v Sandsteonermudstone cratio.
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Table 4.--Data needed to answer questions in table 2-—continued

Déc. "Number of sandstone-mudstone alternations.

D7a. Smectite (montmorillonite) layers above host.
D7b. Presence of volcanic fragments or relict shards.
D8. Presence of large coalified plant fragments.

D9. Presence of fine grains of plant fragments.

D10. Relation of host sandstone with distal facies.
Dlla. Permeability of sandstone—-now, past.

D11b. Aquifer quality of host sandstone.

Dllc. Consolidation of host sandstone.

Dl1d. Presence of impermeable acquitardes.

Ela. Color of host sandstone.

Elb. Color of associated mudstone.

Elc. Evidence for alteration of ilmenite-magnetite and other mafic
minerals.

Eld. Presence or absence of carbonized plant matter.

Ele. Presence or absence of pyrite or pseudomorphs.

E2a. Color of host sandstone.

E2b. Color of associated mudstone.

E2c. Presence or absence of coalified fossil wood.

E2d. Presence or absence of pyrite, marcasite, or .goethite.

E2e. Presence or absence of leucoxene 'or anatase. SN

E2f, Evidence of alteration of .ilmenite-magnetite and:other mafic miverals.:. .

E2g. Presence or.absencewofsfresh—looking -biotite.

E3. .. Kind of.:clay mineral.

E4. & - iTiitimgyand truncationiiristory :of ~host. ' # e e



Table 4.--Data needed to answer questions in table 2--continued

Eb5a.

E5b.

E6.

E7a.
E7b.
E8.

E%a.
E9%b.
E9c.

E9d.

. Fla.

Flb.

-~ F2.
| F3a.
F3b.
F3c.
F3d1.

F3d2.

Gla.
Glb.
c2.

G3a.

G3b.

Clay minerals below truncated surface.

-

Pyrite and mafic mineral content of rocks immediately below bevel
surface.

Presence or absence quartz overgrowths.

Presence or absence calcite.

Character of calcite.

Presence or absence kaolinite nests.

Presence or absence humate impregnation.

Presence or absence coalified plants.

Presence or absence carbonaceous mudstone in and overlying host.

Presence or absence of coal at or near base of Dakota.

Thorium and uranium analyses of granite in provemance region.

Uranium analyses of zircon from host rock or granite in provenance
region.

Biotite and epidote content of host sandstone.

Clay mineralogy of mudstones in host unit,

Clay mineralogy of mudstones in overlying host sandstone.
Th=U ratio of clay in and above host sandstone.

Se and Mo content of ore and geochemical samples.

Se and Mo content of clay in and above host sandstone.

Permeability of barren.and mineralized sandstome.

Distribution of mudstone:layers. i,

Diagenetic mimeralieffect:on.original ‘parmeability.

Present-—day..ground-water ~recharge.

 iDistance «in kil ometers sof.'cell cenxter from:Daketastrumpation of = ;.
f’;ﬁ.-itiﬁ&!’tison. “ + o
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Table 4.--Data needed to answer questions in table 2--continued

G4, Character of humate layers.

G5. Evidence for volcanic debris in Westwater Canyon and Brushy Basin
mudstone.

Gba. Is a sandstone pipe present?

G6b. Evidence of mineralizing-solution path.

G7. Extent of sandstone pipe below base of Morrison.

G8. Presence of pre-ore (late Morrison) faults.

G9a. Do faults and fractures offset primary humate layers?
G9b. Do faults and fractures offset primary uranium layers?
Hla. Shape and orientation of known uranium deposits.

Hlb . ——do.———

Hlc. Distance from truncated edge of Morrison.
H2a. Isotopic ages of primary ore minerals.
H2b. Presence or absence of clasts of Morrison uranium ore in Dakota.

_ H2ec. Relation of ore to faults.

H3a. Presence or absence of uranium in humate.
H3b. Presence or absence and abundance of coffinite.
H3c. Absence of X-ray pattern in uraniferous humate.

H3d. C:U weight ratio in primary humate.

H4. V, Mo, and Se analyses of rocks and ores.

H5. Mo analyses and jordisite mineralogy. N
Héa. Presence or absencevsof pyrite :::in»m;zanim-,-bearingn\:ock.

Héb. U-sulfide Sgmatioginwﬁmanifaronsarock.

H7. Mg analyses:and: ahundanzenufﬁuhln:&bemnm&auuﬂmxnﬁjinnite in
uraniferous:rock. :

H8a. - . Presence:woriabsence f kaolinite-mests inbarvenrock.



Table 4.——Data needed to answer questions in table 2--continued

H8b.

11

12,

I3al.
I3a2.
I3bl.
I3b2.
I3cl.
I3c27
. I3c3.

¥ 1304 .

Jla.
4 J1be
ﬁlec.
TJld.
J2.

J3.

J4.

J5a.
J5b.
Jb6a.
J7b.

Jéc.

Paragenesis of kaolinite and uranium minerals.

Presence or absence of primary ore clasts in younger rocks.
Presence or absence (loction) of remanent-trend ore.
Presence or absence of red hematitic oxides sandstone.
Presence or absence of U deposits at edge of tongue.
Presence or absence of roll-type characteristics.

Relation of rolls to faults and fractures (stacked-ore).
Analyses of organic C and Mo from ore samples.

Coffinite and uraninite mineralogy.

Analyses of FeSz, V, and Se from ore samples.

Morphology of Se concentrations.

Presence or absence of hydrous iron oxides and gypsum,
Presence or absence of secondary U minerals.

Presence or absence of relict humate.

Average grade of U deposit (samples).

Radiometric data of outcrop.

Uranium analysis of ground water.

226Ra analysis of surface and ground water.

226Ra analysis of barite and Mn oxide.

226Ra analysis of sandstone-mudstone contacts
Rn analysis of soil .gas.

He analysis of :soil:.gas.

Rn analysis‘of-sground.sater.

Hevasalysdis sof sgromnd mater. b

k;angéﬂ*mgsisﬂﬁf‘%m;mr.‘57
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Table 4.--Data needed to answer questions in table 2--continued

J6f . 2340 analysis of surface water.
K1. Evidence of burial of Morrison soon after deposition.
K2. Thickness of Brushy Basin (for upper Brushy Basin sandstone such as

Jackpile, also of Dakota and Mancos) shales.

K3. Position of host sandstone relative to present ground-water table.
K4, Dip of host beds.
K5a. Fault map of basin, measure distance to major fault.

K5b. Fault map of basin.

K5c. A Fault map of basin.
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